Расчет несимметричных токов к.з. за трансформаторами 6 кВ

Защита трансформаторов распределительных сетей – Короткие замыкания на выводах низшего (среднего) напряжения

4. Короткие замыкания на выводах низшего (среднего) напряжения понижающего трансформатора
В современных распределительных сетях к «низшим» напряжениям условно относят напряжения 0,4, 0,66, 6 и 10 кВ, к «средним» — 20 и 35 кВ, а к «высшим» 110 и 220 кВ. В отношении двухобмоточных трансформаторов это деление тем более условно, что, например, для трансформатора 10/0,4 кВ напряжение 10 кВ оказывается «высшим». Однако у трехобмоточных трансформаторов, например 110/35/10 кВ, действительно имеется высшее, среднее и низшее напряжения. В обозначении трансформатора обычно указывается только высшее напряжение.
Распределение токов в обмотках трансформатора при к. з. на его выводах низшего (среднего) напряжения зависит от схемы и группы соединения обмоток.
Понижающие силовые масляные трансформаторы общего назначения класса напряжения 110 кВ (ГОСТ 12965—74) имеют схемы и группы соединения обмоток Y/Y/A-0-11 и им подобные: У/А/Д-И-П, Y/A-ll, Y/A-A-U.
Понижающие двухобмоточные трансформаторы 20 и 35 кВ (ГОСТ 12022—76 для трансформаторов 25—630 кВ-А и ГОСТ 11920—73 для трансформаторов от 1 до 80 MB-А) выпускаются со схемами соединения обмоток У/Д-11 при низшем напряжении 6 или 10 кВ, и со схемами Y/Y-0, Л/Y-H и У/У (звезда — зигзаг) при низшем напряжении 0,4 кВ. Согласно этим же ГОСТ трансформаторы 6 и 10 кВ могут иметь схемы соединения Y/Y-0, Д/>М1 (начиная с мощности 160 кВ-А)
и у/у.
Наибольший интерес для выполнения защиты трансформаторов представляют два вида несимметричных к. з. за трансформаторами с этими схемами соединения обмоток — двухфазное к. з. и однофазное к.з. (последнее только для трансформаторов со схемой соединения обмотки низшего напряжения в звезду с заземленной нейтралью У). При этом для выполнения защиты необходимо знать численные значения и фазные соотношения токов со всех сторон защищаемого трансформатора, поскольку место установки защиты и место к.з. не обязательно совпадают. Более того, на трансформаторах небольшой мощности защита может устанавливаться только на питающей стороне. Для удобства и наглядности сравнения токов, проходящих на разных сторонах трансформатора, условно считают, что коэффициент трансформации трансформатора N = 1 и токи нагрузки отсутствуют.
Двухфазное к.з. за трансформатором со схемой соединения обмоток У/Д-11. Как известно, 11-й или 11-часовой группой соединения называется такое соединение обмоток высшего (ВН) и низшего (НН) напряжений трансформатора соответственно в звезду (У) и в треугольник (Л), при которой векторы линейных токов на стороне треугольника (1анн, /в /у/у, 1с нн) опережают на 30° векторы токов соответствующих фаз на стороне звезды (рис. 1-3), считая градусы по принятому положительному направлению вращения векторов против часовой стрелки. Если установить вектор тока на стороне звезды (например, 1 а вн) совпадающим с минутной стрелкой обычных часов, а вектор тока той же фазы на стороне треугольника (1а нн) —с часовой стрелкой, то часы покажут 11 ч.
На рис. 1-3 показаны векторные диаграммы токов в обмотках высшего и низшего напряжения, из которых видно, как образуется угловой сдвиг между векторами токов на сторонах ВН и НН трансформатора У/Л-11. Например, в фазе Анн проходит линейный ток, равный геометрической разности фазных
токов /а — /в, проходящих в обмотке НН, соединенной в треугольник. Вектор линейного тока /аяя = /а —/в сдвинут на 30° относительно вектора фазного тока /а, совпадающего по фазе с вектором 1а вн. Поскольку число витков обмоток, соединенных в треугольник, в л/3 раз больше числа витков обмоток, соединенных в звездузначения фазных то
ков, проходящих в обмотке НН, в д/3 раз меньше, чем токов, проходящих в обмотке ВН (например, Iabh/1a = V^)- Но
значения линейных токов на стороне НН в V3 раз больше фазных (рис. 1-3, г), и, следовательно, значения токов на сторонах ВН и НН трансформатора У/Д-11 оказываются равными (при принятом выше условном коэффициенте трансформации N — 1).
При двухфазном к. з. на стороне НН векторная диаграмма токов в месте к.з. аналогична показанной на рис. 1-1,6. Для того чтобы построить векторную диаграмму токов на стороне

Читайте также:
Подходит ли б/у кирпич для устройства цоколя

Рис. 1-3. Распределение рабочих токов в трансформаторе со схемой соединения обмоток Y/A-11 (а), векторная диаграмма токов на стороне ВН (б), векторные диаграммы фазных (в) и линейных (г) токов на стороне НН, векторная диаграмма токов фазы А на сторонах ВН и НН (д)
BII, воспользуемся методом симметричных составляющих, который очень широко применяется в релейной защите [2,6]. В соответствии с этим методом несимметричная векторная диаграмма токов в месте двухфазного к.з., состоящая только из двух векторов, может быть представлена двумя симметричными векторными диаграммами токов прямой и обратной последовательностей (рис. 1-4, tf).
Для проверки правильности этих диаграмм произведем геометрическое сложение векторов токов прямой и обратной последовательностей каждой фазы:
В результате этого геометрического сложения получается векторная диаграмма полных токов, соответствующая исходной диаграмме полных токов при двухфазном к. з. фаз В и С.
Аналогичные диаграммы токов будут при двухфазных к. з. между другими фазами: А и В (/с = 0), А и С (/в = 0). В распределительных сетях значения векторов lf] и /г2) равны между собой и составляют половину тока трехфазного к. з.

Рис. 1-4. Распределение токов и векторные диаграммы токов при двухфазном к. з. за трансформатором со схемой соединения Y/A-11: а — поясняющая схема и распределение токов на сторонах ВН и НН; б и в — векторные диаграммы токов прямой и обратной последовательностей и полных токов на сторонах ВН и НН соответственно

Значения полных токов в поврежденных фазах (В и С на рис. 1-4, в) в УЗ раз больше:

т. е. ток при двухфазном к. з. несколько меньше, чем при трехфазном, о чем уже упоминалось в § 1-3.
Для построения векторной диаграммы полных токов на стороне ВН трансформатора Y/A-11 необходимо:
векторную диаграмму токов прямой последовательности стороны НН повернуть на —30° (по часовой стрелке);
векторную диаграмму токов обратной последовательности стороны НН повернуть на +30° (против часовой стрелки).
Эти повороты вызваны наличием углового сдвига между токами на сторонах ВН и НН (рис. 1-3). После построения векторных диаграмм прямой и обратной последовательностей на
стороне ВН (рис. 1-4,6) производится геометрическое сложение векторов iT и 1 Двухфазное к.з. за трансформатором со схемой соединения обмоток A/Y- Этот случай отличается от предыдущего лишь тем, что при трансформации симметричных составляющих тока к.з. со стороны НН (звезды) на сторону ВН (треугольника) векторная диаграмма токов прямой последовательности поворачивается на +30° (против часовой стрелки), а векторная диаграмма токов обратной последовательности — на —30° (по часовой стрелке). В результате получается такая же характерная векторная диаграмма полных токов, согласно которой один из линейных токов на стороне ВН (треугольника) в 2 раза больше двух других и равен току трехфазного к.з. за таким же трансформатором. По сравнению с предыдущим случаем эта векторная диаграмма повернута на 180° и больший из токов соответствует другой фазе (В), но для выполнения токовых защит, которыми оборудуются подобные трансформаторы, это не имеет значения. Важно лишь то, что при любом двухфазном к. з. за трансформатором У/Д-11 или Д/У-11 ток в одном из выводов со стороны ВН равен току 1к в двух других — по 0,5/(к3), а направления большего и двух меньших токов противоположны. Это распределение токов учитывается при выполнении и анализе защиты трансформаторов с таким соединением обмоток.
Двухфазное к. з. за трансформатором со схемой соединения обмоток Y/Y-0. Такое соединение обмоток имеет место у трансформаторов Y/Y-0, а также у двух обмоток в трехобмоточных трансформаторах У/У/Д или У/Д/У. Поскольку при таком соединении обмоток отсутствует угловой сдвиг между токами на сторонах ВН и НН (поэтому группа соединений и называется 0-й или 12-й) векторная диаграмма токов на -стороне ВН полностью соответствует векторной диаграмме токов на стороне НН. Таким образом на стороне ВН токи к.з. проходят только в двух, поврежденных, фазах, они равны между собой и векторы их направлены в противоположные стороны (так же как на рис. 1-1, б).
Однофазное к.з. на землю за трансформатором У/У-0 (рис. 1-5). Векторная диаграмма тока в месте однофазного к.з., состоящая из одного вектора /к является несимметричной и может быть представлена тремя симметричными векторными диаграммами токов прямой, обратной и нулевой последовательностей [6]. Эти диаграммы показаны на рис. 1-5, в. Для проверки можно произвести геометрическое сложение симметричных составляющих токов каждой из трех баз:

Читайте также:
Посев газонной травы своими руками: последовательность действий

Все симметричные составляющие имеют равные значения,
в том числеа сумма этих составляющих
равнаПоэтому ток при однофазном к. з. на землю часто
называется утроенным током нулевой последовательности.

Рис. 1-5. Распределение токов и векторные диаграммы токов при однофазном к. з. на землю за трансформатором со схемой соединения обмоток Y/Уа — поясняющая схема и распределение токов на сторонах ВН и НН; б и в — векторные диаграммы токов прямой, обратной и нулевой последовательностей и полных токов на сторонах ВН и НН соответственно
Для построения векторной диаграммы полных токов на стороне ВН нужно учесть, что составляющие нулевой последовательности не могут проходить по обмотке ВН, соединенной в звезду без выведенной и заземленной нулевой точки (нейтрали), поскольку токи /о во всех фазах имеют одно направление (рис. 1 5, в). Следовательно, на сторону ВН трансформируются симметричные составляющие только прямой и обратной последовательностей, причем без поворота векторов, так как рассматривается трансформатор 12-й группы. В результате геометрического сложения векторов Л1) и /г1) каждой фазы получается характерная векторная диаграмма токов (рис. 1-5,6), согласно которой в одной из фаз (поврежденной) на стороне ВН значение тока в 2 раза больше, чем в других фазах, и равно 2/3 тока однофазного к. з., проходящего на стороне НН. Еще раз напомним, что токи сравниваются по значению при условно принятом коэффициенте трансформации трансформатора, равном 1.

Как видно из рис. 1-5 вектор большего тока на стороне ВН направлен в противоположную сторону по отношению к векторам
двух меньших токов, равных -g- /к°. Векторная диаграмма на рис. 1-5,6 имеет только внешнее сходство с векторной диаграммой на рис. 1-4, б.
Однофазное к. з. на землю за трансформатором Л/У-11 (рис. 1-6). Векторные диаграммы токов в месте однофазного к. з. на стороне НН (рис. 1-6, в) имеют точно такой же вид, как на рис. 1-5, в. Для построения векторной диаграммы полных токов

Рис. 1-6. Распределение токов и векторные диаграммы токов при однофазном к. з. на землю за трансформатором со схемой соединения обмоток Д/^-11: а — поясняющая схема и распределение токов на сторонах ВН и НН б и в — векторные диаграммы токов прямой, обратной и нулевой последовательностей и полных токов на сторонах ВН и НН соответственно
на стороне ВН необходимо векторную диаграмму токов прямой последовательности стороны НН повернуть на +30° (против часовой стрелки), а векторную диаграмму токов обратной последовательности стороны НН — на —30° (по часовой стрелке;. Кроме того, надо учесть, что симметричные составляющие нулевой последовательности, имеющие одинаковое направление i о всех фазах, замыкаются в обмотке В#, соединенной в треугольник, и поэтому в линейных токах на стороне ВН отсутствуют. Произведя геометрическое сложение векторов l[l) и Д” /> каждой фазы, получим характерную векторную диаграмму токов, состоящую из двух векторов, направленных в противоположные стороны.
Значение каждого из этих векторов определяется следующим образом:
следовательно,
Таким образом, при однофазном к.з. на землю за трансформатором A/Y на стороне ВН (треугольника) токи к.з. проходят в двух фазах, они имеют противоположное направление и равны /kV 1,73 (рис. 1-6).

Читайте также:
Оригинальные поделки из пластиковых ложек своими руками - пошаговая инструкция, интересные идеи и уникальные фото примеры

Расчет несимметричных токов к.з. за трансформаторами 6 кВ

Особенности расчетов токов КЗ. Для выбора ти­пов и параметров срабатывания устройств защиты трансформаторов необходимо определить максималь­ное и минимальное значение токов при КЗ на выво­дах НН понижающего трансформатора, или, как чаще говорят, при КЗ за трансформатором.

Максимальное значение тока соответствует трехфазному металлическому КЗ за трансформато­ром. Ток трехфазного КЗ рассчитывается при макси­мальном режиме работы питающей энергосистемы (электросети), при котором включено максимально возможное число генераторов, питающих линий и трансформаторов. Эквивалентное электрическое со­противление энергосистемы (электросети) до места подключения рассматриваемого трансформатора при этом режиме имеет минимальное значение, но обозна­чается Z max или X max , что подразумевает максимальный режим работы энергосистемы. При таком режиме ток трехфазного КЗ на выводах ВН трансформатора и мощность КЗ имеют максимальные значения. При значительном числе электродвигателей в прилегаю­щей сети ВН учитывается подпитка места КЗ элек­тродвигателями в течение времени действия защит трансформатора, не имеющих специального замедле­ния, т. е. в течение до 0,1 с. Максимальное значение тока КЗ за трансформатором учитывается для выбора тока срабатывания токовых отсечек, устанавливае­мых на стороне ВН трансформатора (§ 7), а также для выбора аппаратуры и кабелей питаемых элемен­тов стороны НН [6, 7].

Минимальные значения токов при КЗ на сто­роне 0,4 кВ рассчитываются с учетом переходного активного сопротивления (электрической дуги) в ме­сте КЗ до 15 мОм [1]. Для трансформаторов со схе­мой соединения обмоток ∆/ Y практически рассчиты вается минимальное значение тока только при фазном КЗ (считая, что при однофазном КЗ на землю ток в поврежденной фазе имеет такое же значение). Для трансформаторов со схемой соединения обмоток Y / Y рассчитываются токи как при трехфазном, так и при однофазном КЗ, поскольку они значительно от­личаются друг от друга и для их отключения должны устанавливаться разные защиты.

Для трансформаторов 10 кВ с низшим напряже­нием выше 1 кВ (3; 6; 10 кВ) со схемами соединения обмоток Y /∆, Y / Y , ∆/∆ минимальное значение тока рассчитывается при двухфазном металлическом КЗ за трансформатором.

Для всех типов понижающих трансформаторов ми­нимальные значения токов КЗ рассчитываются при минимальном режиме работы питающей энергоси­стемы (электросети), при котором включено мини­мальное реально возможное число генераторов, пи­тающих линий и трансформаторов. При этом эквива­лентное электрическое сопротивление энергосистемы (электросети) до места подключения рассматривае­мого трансформатора имеет максимальное значение. Однако это сопротивление принято обозначать Z min или X min , имея в виду минимальный режим работы питающей энергосистемы (электросети). По мини­мальным значениям токов КЗ определяются так назы­ваемые коэффициенты чувствительности для всех ти­пов защит трансформатора от внутренних и внешних КЗ (кроме газовой). Необходимые значения этих коэффициентов указаны в «Правилах» [1] и в соответ­ствующих разделах этой книги.

Расчеты токов при КЗ за понижающими трансфор­маторами небольшой мощности (практически до 1,6 MB -А) производятся с учетом активной состав­ляющей полного сопротивления трансформатора. Токи намагничивания и токи нагрузки трансформато­ров при расчете токов КЗ не учитываются.

При расчетах токов КЗ за трансформаторами .10 (6) кВ считается, что напряжение питающей энер­госистемы на стороне ВН трансформатора остается неизменным в течение всего процесса КЗ. Это допу­щение объясняется тем, что распределительные сети 10 (6) кВ, как правило, электрически удалены от ге­нерирующих источников энергосистемы и КЗ в этих сетях, и тем более за трансформаторами 10 (6) кВ,

мало сказываются на работе электрических генерато­ров. По этой же причине вычисляется только периоди­ческая составляющая тока КЗ, а влияние апериодиче­ской составляющей тока КЗ учитывается при выборе параметров некоторых типов защиты путем введения повышающих коэффициентов.

Вычисление тока трехфазного КЗ по значению напряжения КЗ трансформатора. Наиболее просто максимальное значение тока (в амперах) трехфазного КЗ за трансформатором вычисляется по значению напряжения КЗ трансформатора ( U k ):

где U k напряжение короткого замыкания из пас­порта (паспортной таблички) трансформатора, %; I ном. тр. — номинальный ток трансформатора на сто­роне ВН или НН из паспорта трансформатора, А;

Читайте также:
Применение голубой паркетной доски из ясеня в дизайне интерьера, особенности материала

— коэффициент, % ( S ном. тр — номинальная мощность трансформатора из паспорта, MB – A ; SK — мощ­ность трехфазного КЗ питающей энергосистемы в той точке, где подключен трансформатор, т. е. на его вы­водах ВН, задается энергоснабжающей организацией, MB -А); если мощность энергосистемы относительно велика («бесконечна»), то р = 0.

Например, трансформатор ТМ-1 напряжением 10/0,4 кВ, мощностью S ном. тр = 1МВ-А, с номиналь­ными токами сторон ВН и НН, равными 58 и 1445 А соответственно, с напряжением КЗ U k 5,5 % под­ключен к энергосистеме в точке, где мощность КЗ SK = 100 MB -А. Токи при трехфазном КЗ за транс­форматором вычисляются по выражениям (5) и (4): р= 1*100/100=1% ; I к. вн =100*58/(5,5 + 1) = 892 А, отнесенных к напряжению 10 кВ; I к.нн = 100 • 1445/ /(5,5+1)=22230 А или 22,2 кА, отнесенных к напря­жению 0,4 кВ.

Другой пример: для трансформатора мощностью S ном.тр = 0,25 МВ-А ( U k = 4,5 %), подключенного в удаленной точке сети 10 кВ, где SK = 12,5 МВ-А, рас­считываются токи при трехфазном КЗ на стороне НН по выражениям (5) и (4): р = 0,25*100/12,5 = 2 %; I к.вн = 100 • 14,5/(4,5 + 2) = 223 А и I к.нн = 5538 А или 5,5 кА, отнесенных к напряжениям 10 и 0,4 кВ соответственно. Номинальные токи трансформатора вычислены по выражениям (2) и (3):

При подключении относительно маломощных транс­форматоров (менее 1 MB -А) вблизи мощных район­ных подстанций и подстанций глубокого ввода 110/10 кВ с трансформаторами мощностью более 10 MB -А влияние сопротивления энергосистемы на значение токов КЗ за трансформаторами снижается и им часто пренебрегают, считая мощность энергоси­стемы «бесконечной», а значение р в выражении (4) равным нулю.

Вычисление тока трехфазного КЗ по полному со­противлению трансформатора Z тр. Значения этого со­противления и его составляющих: активной R тр. и ин­дуктивной X тр. необходимо знать для составления так называемой схемы замещения, в которой своими со­противлениями представлены все элементы расчетной схемы питаемой сети НН. Схема замещения дает воз­можность вычислить значения токов КЗ не только на выводах НН трансформатора, но и в любой точке сети НН [6, 7]

Полное сопротивление трансформатора Z тр. (в омах) определяется по выражению

где U к напряжение КЗ, %; S ном.тр. — номинальная мощность трансформатора, MB -А; U ном.тр. — номи­нальное междуфазное напряжение трансформатора на той стороне ВН или НН, к которой приводится его сопротивление, кВ.

Активная составляющая полного сопротивления трансформатора R тр.определяется по значению потерь мощности ∆ P в его обмотках при номинальной на­грузке. В практических расчетах потери мощности в’ обмотках трансформатора принимают равными по­терям короткого замыкания при номинальном токе трансформатора: ∆Р = P k . Активное сопротивление трансформатора (в омах) вычисляется по выражению

где Рк — потери короткого замыкания при номиналь­ном токе трансформатора, Вт; U ном.тр. и S ном.тр. — то же, что в выражении (6), но здесь мощность S ном.тр. выражается в киловольт-амперах (кВ-А). Значения р k приведены в соответствующих стандартах и спра­вочниках.

Индуктивное сопротивление (реактивная состав­ляющая полного сопротивления) трансформатора (в омах) вычисляется по выражению

где Z тр. — модуль полного сопротивления трансформа­тора, вычисленный по выражению (6); R тр. — активная составляющая полного сопротивления трансформа­тора, вычисленная по выражению (7).

Значения сопротивлений стандартных трансфор­маторов общего назначения напряжением 10/0,4 кВ для вычисления токов трехфазного (и двухфазного) КЗ приведены в табл.2.

Как видно из таблицы, сопротивления, отнесенные к стороне НН с U ном.= 0,4 кВ и указанные для удоб­ства в миллиомах, меньше сопротивлений, отнесенных к стороне ВН с U ном. =10 кВ и указанных в омах, в 625 раз, что соответствует выражению

где N тр. — коэффициент трансформации трансформа­тора, равный для рассматриваемых трансформаторов 10/0,4 = 25.

Таблица 2. Сопротивления трансформаторов 10/0,4 кВ

Определение токов и напряжений при несимметричных к.з.

Ток прямой последовательности для различных видов к. з. определяют как ток условного трехфазного к. з.

Читайте также:
Рулонные шторы на пластиковые окна: как замерить, крепить, инструкция и фото

где — результирующая э. д. с. схемы прямой последовательности; — результирующее сопротивление схемы прямой последовательности относительно точки к. з.; — дополнительное сопротивление, зависящее от вида к. з. и результирующих сопротивлений схем обратной и нулевой последовательностей.
Периодическая составляющая тока поврежденной фазы в месте к. з.

где — коэффициент пропорциональности, зависящий от вида к. з.
Значения и коэффициента для различных видов к. з. приведены в табл. 38-3. Там же даны основные расчетные формулы для токов и напряжений в месте повреждения для различных видов несимметричных к. з.
Векторные диаграммы токов и напряжений в месте повреждения для различных видов несимметричных к. з. показаны на рис. 38-28 — 38-30.

Таблица 38-3 Основные расчетные формулы для определения токов и напряжений при несимметричных коротких замыканиях
Наименования и обозначения определяемых величин Вид короткого замыкания
двухфазное (рис. 38-28) однофазное (рис. 38-29) двухфазное на землю (рис. 38-30)
Условное обозначение вида к. з. (n) (2) (1) (1,1)
Дополнительное сопротивление
Коэффициент 3
Токи в месте к. з.:
прямой последовательности
обратной последовательности
нулевой последовательности
фазы А
фазы В
фазы С
Напряжения в месте к.з.:
прямой последовательности
обратной последовательности
нулевой последовательности
фазы А
фазы В
фазы С

Примечания:
1. Оператор .
2. При построении векторных диаграмм (рис. 38-28-38-30) было принято ; для начального момента к. з. .

p513_1_00

Рис. 38-28.

Векторные диаграммы в месте двухфазного короткого замыкания. а – напряжений; б – токов.

p513_1_02

Рис. 38-30.

Векторные диаграммы в месте двухфазного короткого замыкания на землю. а – напряжений; б – токов.

p513_1_01websor

Рис. 38-29.

Векторные диаграммы в месте однофазного короткого замыкания. а – напряжений; б – токов.

На рис. 38-31 представлены комплексные схемы замещения для несимметричных к. з., составленные по соотношениям в табл. 38-3. Комплексные схемы замещения могут быть использованы для аналитических расчетов к нахождения токов и напряжений при помощи расчетных установок.
Соотношения, приведенные в табл. 38-3, справедливы только для места к. з.
Для определения токов и напряжений в различных ветвях и точках схемы находят их симметричные составляющие по схемам соответствующих последовательностей, затем определяют (аналитически или путем графического построения векторных диаграмм) действительные значения фазных токов и напряжений. Следует учитывать, что для трансформаторов при переходе со стороны высшего напряжения на сторону низшего напряжения комплексный коэффициент трансформации для прямой последовательности

для обратной последовательности

где N — номер группы соединения обмоток трансформатора.
Пример см. на рис 38-32.
Ток в нейтрали автотрансформатора не может быть определен непосредственно из его схемы замещения нулевой последовательности (см. рис. 38-23,6). Ток в нейтрали равен утроенному току нулевой последовательности общей обмотки. Последний определяют по исходной схеме автотрансформатора, из баланса токов нулевой последовательности в узле М (рис. 38-23, а). Токи нулевой последовательности сетей высшего и среднего напряжений предварительно определяют по схеме рис. 38-23, б и приводят к соответствующим ступеням напряжения.

Расчет несимметричных токов короткого замыкания

Для выбора и проверки параметров релейной защиты и автоматики в системах электроснабжения промышленных предприятий наряду с токами трехфазных КЗ необходимо знать токи несимметричных КЗ (двухфазного на землю, однофазного и двухфазного).

В основу расчета несимметричных КЗ положен метод симметричных составляющих, согласно которому любую несимметричную систему векторов (тока, напряжения и т. д.) можно заменить тремя условными симметричными составляющими: прямой, обратной и нулевой последовательностей (в дальнейшем величины, характеризующие прямую последовательность, будем обозначать с индексом 1, обратную последовательность – с индексом 2 и нулевую последовательность – с индексом 0; вид КЗ будем обозначать показателем рассматриваемого параметра, например I(3)п0 – периодическая составляющая тока трехфазного КЗ).

При расчете несимметричных КЗ, как и симметричных трехфазных КЗ, предполагают, что сопротивления всех трех фаз одинаковы, а насыщение магнитных систем не учитывается.

Читайте также:
Складной стульчик

Протекание по фазам несимметричных токов КЗ создает в сопротивлениях фаз несимметричные падения напряжения, которые можно представить в виде симметричных составляющих. Сопротивления элементов трехфазной цепи для разных последовательностей могут отличаться друг от друга.

Для расчета несимметричных токов КЗ составляют схемы замещения прямой, обратной и нулевой последовательностей. Схему замещения прямой последовательности (рис. 6.9, a) составляют аналогично схеме замещения для расчета трехфазного КЗ; она содержит ЭДС прямой последовательности источника питания (генераторы создают только симметричную трехфазную систему ЭДС прямой последовательности) и составляющую прямой последовательности напряжения в месте КЗ Uк1. Для всех элементов схемы замещения прямой последовательности индуктивные сопротивления соответствуют сопротивлениям при симметричном режиме работы х1 = х(3) х(3) – сопротивление, которое принималось при расчете трехфазного КЗ).

Схема замещения обратной последовательности (рис. 6.9, б) состоит из тех же элементов, что и схема замещения прямой последовательности, за исключением ЭДС генераторов, которая в данном случае равна нулю. Сопротивления обратной последовательности для элементов, у которых изменение порядка чередования фаз не оказывает влияния на взаимоиндукцию с соседними фазами(трансформаторы, реакторы, линии), принимают равными сотивлениям прямой последовательности х2 = х1. Синхронные машины имеют разные сопротивления прямой и обратной последовательностей. В качестве приближенных соотношений допускается принимать для турбогенераторов и машин с продольно-поперечными демпферными обмотками х2 = х’d. Для асинхронных электродвигателей сопротивление обратной последовательности можно считать равным х2 = х”. Сопротивление обратной последовательности обобщенной нагрузки можно принимать равным х2* = 0,35, считая нагрузку отнесенной к полной рабочей мощности и среднему номинальному напряжению той ступени, к которой она присоединена.

Схему замещения нулевой последовательности (рис. 6.9, в) составляют при несимметричных КЗ на землю. Токи нулевой последовательности представляют собой однофазный ток I0, разветвленный между тремя фазами. Возвращение токов 3I0 происходит через землю, а если линия защищена тросом, то по тросу и земле.

Составление схемы замещения нулевой последовательности следует начинать от точки, где возникла несимметрия, считая, что в этой точке все фазы замкнуты между собой накоротко и к ней приложено напряжение нулевой последовательности Uк0. Чтобы получилась замкнутая цепь для прохождения токов нулевой последовательности, в схеме должна быть хотя бы одна заземленная нейтраль. Если таких нейтралей несколько, то полученные цепи включаются параллельно. Сопротивление, через которое заземлена нейтраль трансформатора, генератора, двигателя, нагрузки, должно вводиться в схему нулевой последовательности утроенным.

Расчет токов короткого замыкания

25 марта 2015 k-igor

Сегодня хочу вашему вниманию представить методику расчета токов короткого замыкания. Самое главное без всякой воды и каждый из вас сможет ей воспользоваться, приложив минимум усилий, а некоторые из вас получат и мою очередную программу, с которой считать будет еще проще.

Это уже вторая статья, посвященная токам короткого замыкания. В первой статье я обратил ваше внимание на защиту протяженных электрических сетей и то, что в таких сетях, порой, не так просто подобрать защиту от токов короткого замыкания. Для того и проектировщик, чтобы решать подобные вопросы.

Теорию по расчету токов короткого замыкания можно найти в следующих документах:

1 ГОСТ 28249-93 (Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ).

2 РД 153-34.0-20.527-98 (Руководящие указания по расчету токов короткого замыкания и выбору элетрооборудования).

3 А.В. Беляев (Выбор аппаратуры, защит и кабелей в сетях 0,4кВ).

В интернете я не нашел, где все четко было бы расписано от «А» до «Я».

Думаю вы со мной согласитесь, что токи короткого замыкания не так просто рассчитать, поскольку проектировщик не всегда досконально владеет всей необходимой информацией. Данный метод расчета является упрощенным, т.к. в нем не учитываются сопротивления контактов автоматических выключателей, предохранителей, шин, трансформаторов тока.

Возможно, позже все эти сопротивления я учту, но, на мой взгляд, эти значения на конечный результат влияют незначительно.

Последовательность расчета токов короткого замыкания.

Читайте также:
Портьеры в интерьере квартиры

1 Сбор исходных данных по трансформатору:

Uкз — напряжение короткого замыкания трансформатора, %;

Рк — потери короткого замыкания трансформатора, кВт;

Uвн – номинальное напряжение обмоток ВН понижающего трансформатора; кВ;

Uнн (Ел) – номинальное напряжение обмоток НН понижающего трансформатора; В;

Еф – фазное напряжение обмоток НН понижающего трансформатора; В;

Sнт – номинальная мощность трансформатора, кВА;

– полное сопротивление понижающего трансформатора током однофазного к.з., мОм;

Активные и индуктивные сопротивления трансформаторов 6(10)/0,4кВ, мОм

Активные и индуктивные сопротивления трансформаторов 6 (10)/0,4кВ, мОм

2 Сбор исходных данных по питающей линии:

Тип, сечение кабеля, количество кабелей;

L – длина линии, м;

Хо – индуктивное сопротивление линии, мОм/м;

Zпт – полное сопротивление петли фаза-ноль от трансформатора до точки к.з., измеренное при испытаниях или найденное из расчета, мОм/м;

Полное удельное сопротивление петли фаза-ноль для кабелей или пучка проводов

Полное удельное сопротивление петли фаза-ноль для кабелей или пучка проводов

3 Другие данные.

Куд – ударный коэффициент.

Ударный коэффициент

После сбора исходных можно приступить непосредственно к вычислениям.

Активное сопротивление понижающего трансформатора, мОм:

Активное сопротивление трансформатора

Индуктивное сопротивление понижающего трансформатора, мОм:

Индуктивное сопротивление трансформатора

Индуктивное сопротивление трансформатора

Активное сопротивление питающей линии, мОм:

Индуктивное сопротивление питающей линии, мОм:

Полное активное сопротивление, мОм:

Полное индуктивное сопротивление, мОм:

Полное сопротивление, мОм:

Ток трехфазного короткого замыкания, кА:

Ток трехфазного короткого замыкания

Ударный ток трехфазного к.з., кА:

Ударный ток трехфазного к.з.

Ток однофазного короткого замыкания, кА:

Ток однофазного короткого замыкания

Рассчитав токи короткого замыкания, можно приступать к выбору защитных аппаратов.

По такому принципу я сделал свою новую программу для расчета токов короткого замыкания. При помощи программы все расчеты можно выполнить значительно быстрее и с минимальным риском допущения ошибки, которые могут возникнуть при ручном расчете. Пока это все-таки beta-версия, но тем не менее думаю вполне рабочий вариант программы.

Внешний вид программы:

Программа для расчета токов к.з.

Программа для расчета токов к.з.

Ниже в программе идут все необходимые таблицы для выбора нужных параметров трансформатора и питающей линии.

Также в месте с программой я прилагаю образец своего расчета, чтобы быстро можно было оформить расчет и предоставить всем заинтересованным органам.

Стоит заметить, что у меня появилась еще одна мелкая программа – интерполяция. Удобно, например, находить удельную нагрузку квартир при заданных значениях.

Интерполяция

Жду ваших отзывов, пожеланий, предложений, уточнений.
Продолжение следует. будет еще видеообзор измененной версии.
Нужно ли учитывать сопротивления коммутационных аппаратов при расчете к.з.?

Пример расчета тока трехфазного к.з. в сети 0,4 кВ

В данном примере будет рассматриваться расчет тока трехфазного короткого замыкания в сети 0,4 кВ для схемы представленной на рис.1.

Рис.1 - Однолинейная схема питания и расчетная схема замещения

1. Ток короткого замыкания на зажимах ВН трансформатора 6/0,4 кВ составляет — 11 кА.

2. Питающий трансформатор типа ТМ — 400, основные технические характеристики принимаются по тех. информации на трансформатор:

Читайте также: Потенциал электрического поля — формулы определения, характеристика и единицы измерения

  • номинальная мощностью Sн.т — 400 кВА;
  • номинальное напряжение обмотки ВН Uн.т.ВН – 6 кВ;
  • номинальное напряжение обмотки НН Uн.т.НН – 0,4 кВ;
  • напряжение КЗ тр-ра Uк – 4,5%;
  • мощность потерь КЗ в трансформаторе Рк – 5,5 кВт;
  • группа соединений обмоток по ГОСТ 11677-75 – Y/Yн-0;

3. Трансформатор соединен со сборкой 400 В, алюминиевыми шинами типа АД31Т по ГОСТ 15176-89 сечением 50х5 мм. Шины расположены в одной плоскости — вертикально, расстояние между ними 200 мм. Общая длина шин от выводов трансформатора до вводного автомата QF1 составляет 15 м.

4. На стороне 0,4 кВ установлен вводной автомат типа XS1250CE1000 на 1000 А (фирмы SOCOMEC), на отходящих линиях установлены автоматические выключатели типа E250SCF200 на 200 А (фирмы SOCOMEC) и трансформаторы тока типа ТСА 22 200/5 с классом точности 1 (фирмы SOCOMEC).

5. Кабельная линия выполнена алюминиевым кабелем марки АВВГнг сечением 3х70+1х35.

Для того, чтобы рассчитать токи КЗ, мы сначала должны составить схему замещения, которая состоит из всех сопротивлений цепи КЗ, после этого, определяем все сопротивления входящие в цепь КЗ. Активные и индуктивные сопротивления всех элементов схемы замещения выражаются в миллиомах (мОм).

Читайте также:
Септик из бетонных колец при высоком угв

Расчет токов короткого замыкания

2015-03-07 27862
Расчет токов короткого замыкания (КЗ) необходим для выбора аппаратуры и проверки элементов электроустановок (шин, изоляторов, кабелей и т. д.) на электродинамическую и термическую устойчивость, а также уставок срабатывания защит и проверки их на чувствительность срабатывания. Расчетным видом КЗ для выбора или проверки параметров электрооборудования обычно считают трехфазное КЗ. Однако для выбора и проверки уставок релейной защиты и автоматики требуется определение и несимметричных токов КЗ.

Расчет токов КЗ с учетом действительных характеристик и действительных режимов работы всех элементов системы электроснабжения сложен.

Поэтому для решения большинства практических задач вводят допущения, которые не дают существенных погрешностей:

— трехфазная сеть принимается симметричной;

— не учитываются токи нагрузки;

— не учитываются емкости, а следовательно, и емкостные токи в воздушной и кабельной сетях;

— не учитывается насыщение магнитных систем, что позволяет считать постоянными и не зависящими от тока индуктивные сопротивления всех элементов короткозамкнутой цепи;

— не учитываются токи намагничивания трансформаторов.

В зависимости от назначения расчета токов КЗ выбирают расчетную схему сети, определяют вид КЗ, местоположение точек КЗ на схеме и сопротивления элементов схемы замещения. Расчет токов КЗ в сетях напряжением до 1000 В и выше имеет ряд особенностей, которые рассматриваются ниже.

При определении токов КЗ используют, как правило, один из двух методов:

Читайте также: Как работать с ОУ LM358: схемы включения и практическое применение. Усилитель термопары на LM358

— метод именованных единиц – в этом случае параметры схемы выражают в именованных единицах (омах, амперах, вольтах и т. д.);

— метод относительных единиц – в этом случае параметры схемы выражают в долях или процентах от величины, принятой в качестве основной (базисной).

Метод именованных единиц применяют при расчетах токов КЗ сравнительно простых электрических схем с небольшим числом ступеней трансформации.

Метод относительных единиц используют при расчете токов КЗ в сложных электрических сетях с несколькими ступенями трансформации, присоединенных к районным энергосистемам.

Если расчет выполняют в именованных единицах, то для определения токов КЗ необходимо привести все электрические величины к напряжению ступени, на которой имеет место КЗ.

При расчете в относительных единицах все величины сравнивают с базисными, в качестве которых принимают базисную мощность одного трансформатора ГПП или условную единицу мощности, например 100 или 1000 МВА.

В качестве базисного напряжения принимают среднее напряжение той ступени, на которой произошло КЗ (Uср = 6,3; 10,5; 21; 37; 115; 230 кВ). Сопротивления элементов системы электроснабжения приводят к базисным условиям в соответствии с табл. 3.1.

Средние удельные значения индуктивных сопротивлений воздушных и кабельных линий электропередачи

Линия электропередачи xуд, Ом/км
Одноцепная воздушная линия, кВ:
6−220 0,4
220−330 (при расщеплении на два провода в фазе) 0,325
400−500 (при расщеплении на три провода в фазе) 0,307
750 (при расщеплении на четыре провода в фазе) 0,28
Трехжильный кабель, кВ:
6−10 0,08
0,12
Одножильный маслонаполненный кабель 110−220 кВ 0,16

Расчет токов КЗ начинают с составления расчетной схемы электроустановки. На расчетной схеме указываются все параметры, влияющие на величину тока КЗ (мощности источников питания, средне номинальные значения ступеней напряжения, паспортные данные электрооборудования), и расчетные точки, в которых необходимо определить токи КЗ. Как правило, это сборные шины ГПП, РУ, РП или начало питающих линий. Точки КЗ нумеруют в порядке их рассмотрения начиная с высших ступеней.

Определение сопротивлений питающей энергосистемы

В практических расчетах для упрощения расчетов токов к.з. учитывается только индуктивное сопротивление энергосистемы, которое равно полному. Активное сопротивление не учитывается, данные упрощения на точность расчетов – не влияют!

Читайте также:
ПИР плиты: особенности материала и отзывы потребителей

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]:

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]:

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]

Измерение тока КЗ. Выводим формулы

Итак, самый распространенный метод измерения тока КЗ — метод падения напряжения, который мы сейчас и проверим на практике. Этот метод — косвенный, то есть итоговое значение получается путем измерения некоторых параметров с дальнейшими расчетами по формулам. Эти формулы мы сейчас и получим. Конечно, не без помощи нашего немецкого коллеги, о котором мы знаем из уроков физики.

Для начала несколько пояснений. Предлагаю условиться, что розетка — это источник напряжения, обладающий внутренним сопротивлением Ri. Это сопротивление фактически является сопротивлением цепи «фаза-ноль». Также для простоты изложения условимся не учитывать реактивную составляющую, т. е. принимаем cos φ=1. Таким образом, получаем такую схему, к которой можем применить закон Ома для полной цепи:

Иными словами, получаем резистивный делитель напряжения: напряжение на его выходе всегда ниже, чем на входе. Сопротивление Ri «олицетворяет» собой все сопротивления, которые встречаются на пути электроэнергии, — от сопротивления обмоток трансформатора на подстанции (ТП) до переходного сопротивления клемм розетки, через которые подключается нагрузка с сопротивлением Rн.

Напряжение Uхх — это напряжение холостого хода, которое будет действовать на вторичной обмотке трансформатора, когда нагрузка не подключена. Uн — напряжение на нагрузке, которое всегда меньше Uхх. В расчетах будет фигурировать и номинальное напряжение Uном, которое обычно бывает равным 220 или 230 В. Наша задача — рассчитать ток короткого замыкания Iкз, который равен току, протекающему через внутреннее сопротивление источника питания Ri, при напряжении холостого хода Uхх и нулевом сопротивлении нагрузки (Rн=0, Uн=0). Таким образом наша основная формула будет иметь такой вид:

Напряжение холостого хода легко узнать — оно измеряется вольтметром, когда вся нагрузка на данной линии отключена.

Напряжение холостого хода Uхх — это наибольшее значение напряжения, которое в принципе может быть в розетке. Конечно, за исключением аварийных режимов.

Теперь дело за малым — определить внутреннее сопротивление источника (сопротивление петли «фаза-ноль») Ri. Это можно сделать тремя способами, про которые я сейчас расскажу.

Определение сопротивлений трансформатора 6/0,4 кВ

2.1 Определяем полное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-8 [Л1. с. 28]:

2.2 Определяем активное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-9 [Л1. с. 28]:

2.3 Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-10 [Л1. с. 28]:

Для упрощения расчетов можно воспользоваться таблицей 2.4 [Л1. с. 28], как видно из результатов расчетов, активные и индуктивные сопротивления совпадают со значениями таблицы 2.4.

Таблица 2.4 - Значения активных и индуктивных сопротивлений трансформаторов

Определение сопротивлений шин

3.1 Определяем индуктивное сопротивление алюминиевых прямоугольных шин типа АД31Т сечением 50х5 по выражению 2-12 [Л1. с. 29]:

3.1.1 Определяем среднее геометрическое расстояние между фазами 1, 2 и 3:

3.2 По таблице 2.6 определяем активное погонное сопротивление для алюминиевой шины сечением 50х5, где rуд. = 0,142 мОм/м.

Для упрощения расчетов, значения сопротивлений шин и шинопроводов, можно применять из таблицы 2.6 и 2.7 [Л1. с. 31].

Таблицы 2.6, 2.7 - Активное и индуктивное удельные сопротивления шин и шинопроводов

3.3 Определяем сопротивление шин, учитывая длину от трансформатора ТМ-400 до РУ-0,4 кВ:

Определение сопротивлений трансформаторов тока

Значения активных и индуктивных сопротивлений обмоток для одного трансформатора тока типа ТСА 22 200/5 с классом точности 1, определяем по приложению 5 таблица 20 ГОСТ 28249-93, соответственно rта = 0,67 мОм, хта = 0,42 мОм.

Таблица 20 - Значения активных и индуктивных сопротивлений трансформаторов тока ГОСТ 28249-93

Активным и индуктивным сопротивлением одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.

Согласно [Л1. с. 32] для упрощения расчетов, сопротивления трансформаторов тока не учитывают ввиду почти незаметного влияния на токи КЗ.

Допущения при расчете токов КЗ

При расчетах токов КЗ в электроустановках переменного тока напряжением свыше 1 кВ принимаются следующие допущения:

  1. Не учитываются активные сопротивления элементов сети, если их суммарное эквивалентное активное сопротивление до точки КЗ не превышает 30% суммарного индуктивного сопротивления элементов схемы до той же точки КЗ. Хотя получается, что для того чтобы рассчитать будет ли активное сопротивление составлять менее 30% индуктивного необходимо все равно посчитать активные сопротивления всех элементов схемы. А если они определены, то что мешает учесть их при расчете токов КЗ?
  2. Не учитываются токи нагрузки
  3. Не учитываются емкостные токи воздушных и кабельных линий
  4. Считается, что сопротивления фаз трехфазной сети равны между собой
  5. Не учитываются токи намагничивания трансформаторов и насыщение стали магнитопроводов.
  6. Допустимая погрешность расчета токов КЗ составляет 10%
Читайте также:
Септик из бетонных колец при высоком угв

Определение сопротивлений автоматических выключателей

Определяем активное сопротивление контактов по приложению 4 таблица 19 ГОСТ 28249-93:

  • для рубильника на ток 1000 А – rав1 = 0,12 мОм;
  • для автоматического выключателя на ток 200 А — rав2 = 0,60 мОм.

Таблица 19 - Значения сопротивлений разъемных контактов коммутационных аппаратов напряжением до 1 кВ ГОСТ 28249-93

Зачем нужно знать ток КЗ?

Ток КЗ — это максимально возможный ток в определенной точке сети. Этот параметр определяет качество электропроводки в целом. Зная значение ожидаемого тока короткого замыкания, можно:

  • оценить способность установленных автоматических выключателей обеспечить защиту при коротком замыкании;
  • оценить селективность разных уровней защиты;
  • проверить сопротивление заземляющего устройства (качество контура системы заземления).

Подробнее вопросы селективности и выбора автоматических выключателей будут рассмотрены в следующей статье.

Определение сопротивлений контактных соединений кабелей и шинопроводов

Для упрощения расчетов, сопротивления контактных соединений кабелей и шинопроводов, я пренебрегаю, ввиду почти незаметного влияния на токи КЗ.

Если же вы будете использовать в своем расчете ТКЗ значения сопротивления контактных соединений кабелей и шинопроводов, то они принимаются по приложению 4 таблицы 17,18 ГОСТ 28249-93.

При приближенном учете сопротивлений контактов принимают:

  • rк = 0,1 мОм — для контактных соединений кабелей;
  • rк = 0,01 мОм — для шинопроводов.

Таблицы 17,18 - Значения сопротивления контактных соединений кабелей и шинопроводов ГОСТ 28249-93

Способы расчета

Предположим, что замыкание уже произошло в трехфазной сети, к примеру, на подстанции или на обмотках трансформатора, как тогда производится расчет токов короткого замыкания:

Формула — ток трехфазного замыкания

Здесь U20 – это напряжение обмоток трансформатора, а ZT – сопротивление определенной фазы (которая была повреждена в КЗ). Если напряжение в сетях – это известный параметр, рассчитывать требуется сопротивление.

Каждый электрический источник, будь-то трансформатор, контакт аккумуляторной батареи, электрические провода – имеет свой номинальный уровень сопротивления. Иными словами, Z у каждого свое. Но они характеризуются сочетанием активных сопротивлений и индуктивных. Также есть емкостные, но они не имеют значение при расчете токов высокой силы. Поэтому многими электриками используется упрощенный способ вычисления этих данных: арифметический расчет сопротивления постоянного тока на последовательно соединенных участках. Когда эти характеристики известны, не составит труда по формуле ниже рассчитать полное сопротивление для участка или целой сети:

Формула полного заземления

Рассмотрим на примере, как рассчитать ток короткого замыкания аккумулятора с ЭДС 12 В и внутренним сопротивлением 0,01 Ом. Для начала потребуется формула Ома для полной цепи:

Где ε – это ЭДС, а r – величина сопротивления.

Учитывая, что во время перегрузок сопротивление равняется нулю, решение принимает следующий вид:

I = ε/r = 12 / 10 -2

Исходя из этого, сила при коротком замыкании этого аккумулятора равна 1200 Ампер.

Таким образом можно также рассчитать ток КЗ для двигателя, генератора и других установок. Но на производстве не всегда есть возможность рассчитывать допустимые параметры для каждого отдельного электрического устройства. Помимо этого, следует учитывать, что при несимметричных замыканиях нагрузки имеют разную последовательность, для учета которой требуется знать cos φ и сопротивление. Для расчета используется специальная таблица ГОСТ 27514-87, где указываются эти параметры:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: