РадиоКот :: PWM регулятор 0% … 100%. До 100 ампер

Генератор на NE555 с регулировкой частоты

По своим техническим характеристикам микросхему NE555 относят к универсальным таймерам с широким диапазоном устанавливаемых временных интервалов. Почти во всех схемах ne555 используют и включают – как генератор прямоугольных импульсов напряжения различной частоты и длительности. С минимальным дополнительным набором радиоэлементов (резисторов и конденсатор), на её основе реализуют множество вариаций электронных приборов: реле времени, генераторов, модуляторов, ШИМ-регуляторов, разнообразных мигалок, звуковых имитаторов низких/высоких частот и ещё много чего другого.

Цоколевка

Распиновка NE555 остается неизменной на протяжении долгих лет её использования в различных приложениях. Классическая версия выпускается приимущественно в пластиковом корпусе DIP-8. Оформление для поверхностного монтажа (SOP-8, SOIC-8) появились значительно позже. Однако расположение выводов осталось прежним: 1 (земля, минус); 2 (запуск); 3 (выход); 4 (сброс); 5 (контроль); 6 (останов); 7 (разряд); 8 (плюс источника питания). Первый из них всегда маркируется небольшим круглым углублением или выпуклой точкой.

Раньше существовала версия в круглом металлическом корпусе (LM555CH), но её уже давно никто не изготавливает. Структурно представляет собой управляющий RS-триггер, два компаратора, разрядный транзистор для времязадающего конденсатора и инвертирующий усилитель.

Пример №11 — Одновибратор на NE555

При подаче питания на схему одновибратора, на выводе 3 таймера NE555 будет низкий уровень. Запуск одновибратора происходит в момент подачи отрицательного импульса на вход 2 (запуск), при этом на его выходе будет высокий уровень в течение времени определяемое значениями R1 и C1.

Следует иметь в виду, что запускающий импульс должен быть короче выходного. Если же входной сигнал будет дольше, то пока на входе низкий уровень на выходе все время будет высокий. Подробнее о работе одновибратора на 555 таймере читайте здесь.

Типовые характеристики

NE555 не относится к биполярным ИС, КМОП или ТТЛ-схемам, однако совместима с ними. Рекомендуемое питание для неё находится в диапазоне от +4.5В до +16В. Если его значение составляет +5В, то выход таймера согласуется с ТТЛ-входами других ИС. Иначе надо применять дополнительные согласующие устройства для задания импульсам необходимого уровня.

Предельные допустимые

Рассмотрим типовые предельные эксплуатационные параметры NE555, характерные большинству её модификаций. Они могут незначительно отличаться между собой в зависимости от компании-изготовителя, но в основном повторяются во всех технических описаниях:

  • напряжение источника питания от +4.5 до +18В;
  • мощность рассеивания до 600 мВт;
  • выходной ток до 200 мА;
  • максимальная рабочая частота 500 кГц;
  • температура: рабочая от 0 до 70ОС; хранения от -65 до +150ОС.

Превышение предельно допустимых параметров может привести к неисправности изделия.

Аналоги

Чем можно заменить и какой подобрать аналог для ne555 ? В советские годы, примерно с 1975 года, полным аналогичным устройством являлась КР1006ВИ1. Сейчас её продолжают выпускать на Рижском в Латвии. Сохранилось производство и на белорусском предприятии «Интеграл», там её маркируют так — IN555.

Понятно, что данные на КР1006ВИ1 указаны на русском языке и почти полностью повторяют информацию представленную в англоязычном datasheet на 555. Поэтому многие радиолюбители предпочитают ознакамливаться именно с русскоязычной версией этого универсального таймера.

Но есть один нюанс, который стоит знать, особенно когда надо подобрать подходящую замену. Так, в нашей версии устройства имеется логический приоритет в работе выводов «останова» над «запуском», в то время как у оригинала все наоборот. И хотя в большинстве типовых схем данный функционал не используется, его все же необходимо учитывать в своих разработках.

Шим регулятор на NE555

Регулировка оборотов электродвигателей в современной электронной технике достигается не изменением питающего напряжения, как это делалось раньше, а подачей на электромотор импульсов тока, разной длительности. Для этих целей и служат, ставшие в последнее время очень популярными — ШИМ (широтно-импульсно модулируемые) регуляторы. Схема универсальная — она же и регулятор оборотов мотора, и яркости ламп, и силы тока в зарядном устройстве.

Схема ШИМ регулятора

Указанная схема отлично работает, печатная плата прилагается.

Скачано: 110, размер: 6.8 KB, дата: 08 Мар. 2021

Без переделки схемы напряжение можно поднимать до 16 вольт. Транзистор ставить в зависимости от мощности нагрузки.

Читайте также:
Система защиты от протечки воды Нептун ее отличие от других систем

Можно собрать ШИМ регулятор и по такой электрической схеме, с обычным биполярным транзистором:

А при необходимости, вместо составного транзистора КТ827 поставить полевой IRFZ44N, с резистором R1 — 47к. Полевик без радиатора, при нагрузке до 7 ампер, не греется.

Работа ШИМ регулятора

Таймер на микросхеме NE555 следит за напряжением на конденсаторе С1, которое снимает с вывода THR. Как только оно достигнет максимума — открывается внутренний транзистор. Который замыкает вывод DIS на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю — система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь. Заряд конденсатора С1 идет по пути: «R2->верхнее плечо R1 ->D2«, а разряд по пути: D1 -> нижнее плечо R1 -> DIS. Когда вращаем переменный резистор R1, у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе. Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1. Меняя отношение сопротивлений заряда/разряда — меняем скважность. Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Рекомендации по сборке и настройке

Диоды можно ставить любые, конденсаторы примерно такого номинала, как на схеме. Отклонения в пределах одного порядка не влияют существенно на работу устройства. На 4.7 нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно. Если после сборки схемы греется ключевой управляющий транзистор, то скорее всего он полностью не открывается. То есть на транзисторе большое падение напряжения (он частично открыт) и через него течет ток. В результате рассеивается большая мощность, на нагрев. Желательно схему параллелить по выходу конденсаторами большой емкости, иначе будет петь и плохо регулировать. Чтобы не свистел — подбирайте С1, свист часто идет от него. В общем область применения очень широкая, особенно перспективным будет её использование в качестве регулятора яркости мощных светодиодных ламп, LED лент и прожекторов, но про это в следующий раз.

5 / 5 ( 1 голос )

Схемы включения ne555

Сама по себе данная микросхема это как бы «незавершенное» изделие с возможностью реализации на нем двух режимов эксплуатации — таймера запуска (моностабильный) и генератора одиночных импульсов (мультивибратора). Чтобы заставить её функционировать в одном из них, необходима небольшая доработка. Для этого межу контактами 1 и 8 добавляется RC-цепочка (она же времязадающая), для которой заранее подбираются резистор и конденсатор. Их значения будут задавать необходимую частоту и периодичность прямоугольных сигналов «включения/выключения» на выходе микросхемы после подачи на неё питания. Для повышения точности в работе и избегания влияния внешних помех 5 пин (контроль) рекомендовано шунтировать ёмкостью, величина которой должна быть не более 0,1 мкФ.

Моностабильный режим

Рассмотрим принцип работы в режиме таймера. Для его реализации необходимы дополнительные элементы — один резистор Rt и пара ёмкостей. После подачи питания, на третьей ножке относительно земли будет около 0В. Времязадающий конденсатор Сt полностью разряжен и в таком состоянии схема может находиться достаточно долго, пока на контакт 2 (запуск) не поступит положительный сигнал. Его величина должна быть в три раза меньшей питающего напряжения (Ucc/3).

После подачи сигнала на контакт 2 (запуск), на выходе микросхемы появляется напряжение аналогичное питающему (высокий уровень). Его длительность зависит от времени заряда Сt до уровня 2/3 от Ucc через резистор Rt. Как только это произойдет, выходное напряжение снизится практически до 0В и Сt разрядится.

Важным моментом в этой схеме является то, что после её включения, любые воздействия на контакт 2 (запуск) больше не будут вилять на высокий уровень на выходе. Но его все же можно сбросить, если подать сигнал на четвертую ножку (сброс). Временной интервал выходного импульса (Т) рассчитывается по формуле T=1.1*Rt*Ct.

Читайте также:
Набор инструментов для резьбы по дереву

Режим мультивибратора

В режиме мультивибратора микросхема ne555 выдает серию прямоугольных сигналов, периодичность которых также определяются значениями времязадающей RC-цепочки. Как видно из рисунка ниже, конструкция немного изменена и в неё добавлено еще одно сопротивление. Контакт 7 (разряд) физически соединен между резисторами Ra и Rb, но логически он отключен внутри универсального таймера.

После подачи питания на микросхему, на 3 пине (выходе) появится высокий уровень относительно земли, а конденсатор Сt начинает заряжается через Ra и Rb. Как только Сt достигнет заряда 2/3 от величины питающего напряжения, схема переключится и на её выходе будет около 0В. При этом включится контакт 7 (разряд) и через резистор Rb будет разряжаться Сt.

После того как конденсатор Ct разрядится на 1/3 схема снова переключится, и на её выходе появится высокий уровень. Разъединится контакт 7 (разряд) и Ct начнет опять заряжаться через Ra и Rb. Результатом такой работы станет серия прямоугольных импульсов, длительность которых будет определяться величинами элементов Ra, Rb и Сt. Промежуток между началом каждого из импульсов называют общим периодом ТП. Его можно увеличивать до 30 секунд путем повышения ёмкости Ct. Частоту колебаний определяют по формуле F = 1/ТП.

Не рекомендуется превышать частотный предел в 360 кГц, так как большие значения могут приводить к нестабильной работе устройства.

Пример №7 — Простой генератор прямоугольных импульсов на NE555

В момент включения схемы, конденсатор C1 разряжен и на выходе 3 таймера NE555 находится высокий уровень. Затем конденсатор C1 через резистор R1 начинает постепенно заряжаться.

В момент, когда потенциал на конденсаторе, и соответственно на выводе 6 (стоп) таймера, достигнет примерно 2/3 напряжения питания, сигнал на выводе 3 переключится на низкий уровень. Теперь конденсатор через сопротивление R1 начинает разряжаться. Когда уровень напряжения на входе 2 (запуск) упадет до 1/3 Uпит., на выходе снова будет высокий уровень. И процесс повторится снова.

Если к выходу добавить еще RC-цепь (выделено красным цветом), то выходной сигнал по форме будет приближен к синусоиде.

Блок питания 0…30 В / 3A

Набор для сборки регулируемого блока питания…

Проверка работоспособности

Для своих самоделок NE555 можно выпаять из старого, ненужного или уже неисправного оборудования. Она встречается в пультах управления, терморстатах, терморегуляторах, ёлочных гирляндах, светомузыкальных и различных устройствах с временной задержкой включения, автомобильных тахометрах и др. Если повезло и Вам удалось найти её, то перед использованием в своих электронных конструкциях, необходимо определить её на работоспособность.

Проверить мультиметром не получится. Поэтому для этих целей обычно используют простенький тестер – он же «мигалка на светодиодах». Если после подключения питания оба диода поочередно помигивают, то NE-шка рабочая. В противном случае – неисправна.

Применение

Невероятно низкая цена, доступность и простота реализации функционально сложных и в тоже время тривиальных электронных схем на ее основе, без глубоких познаний в области электроники, сделали её самой любимой игрушкой большинства начинающих радиолюбителей. Она является сердцем самых разнообразных и очень популярных конструкций, в том числе сделанных своими руками.

По инструкции в непродолжительном видео Вы можете собрать некоторые из схем на NE555: простого и более совершенного металлоискателя пират, ШИМ-регулятора, повышающего DC-преобразователя и измерителя индуктивности и емкости на триггере Шмитта.

Производители

Рассмотренный универсальный таймер, созданный американской компанией Signeticsв далеком 1971 г., до сих пор продолжают выпускать почти все известными мировые брэнды полупроводниковой промышленности. При этом маркировка её полных аналогов у различных компании может отличатся от оригинала, несмотря на полную функциональную и физическую идентичность. Например судя по datasheet NE555 P (она же LM555P) и NE555N являются одним и тем же устройством двух конкурентов: Texas Instruments и STMicroelectronics соответственно. NE555L является продуктом китайской Unisonic Technologies Co (UTC). Японская Motorolа когда то делала CMOS-версии с обозначением MC1455. В настоящее время продолжается процесс её совершенствования и модернизации под современные требования.

Читайте также:
Отопление двухэтажного дома. Какие варианты существуют?

ZK-MG, ШИМ регулятор оборотов двигателя постоянного тока в корпусе

Множество бытовых приборов и электроинструментов не обходятся без коллекторного электродвигателя. Такая популярность подобного электродвигателя обусловлена универсальностью.
Для коллекторного электродвигателя может использование питание от тока постоянного или переменного напряжения. Дополнительным преимуществом является эффективный пусковой момент. При этом работа от постоянного или переменного тока электродвигателя сопровождается высокой частотой оборотом, что подходит далеко не всем пользователям. Чтобы обеспечить более плавный пуск и иметь возможность настраивать частоту вращения, используется регулятор оборотов. Простой регулятор вполне можно изготовить своими руками.

Но прежде чем будет обсуждаться схема, сначала нужно разобраться в коллекторных двигателях.

Коллекторные электродвигатели

Конструкция любого коллекторного двигателя включает несколько основных элементов:

Работа стандартного коллекторного электродвигателя основана на следующих принципах.

  1. Осуществляется подача тока от источника напряжения 220в. Именно 220 Вольт является стандартным напряжением бытовой сети. Для большинства приборов с электромоторами более 220 Вольт не требуется. Причем подача тока идет на ротор и статор, которые соединяются один с другим.
  2. В результате подачи тока от источника 220в образуется поле магнитное.
  3. Под воздействием магнитного напряжения начинается вращение ротора.
  4. Щетки осуществляют передачу напряжения непосредственно на ротор устройства. Причем щетки обычно изготавливают на основе графита.
  5. Когда направление тока в роторе или статоре меняется, вал вращается в обратную сторону.

Кроме стандартных коллекторных электродвигателей, существуют другие агрегаты:

Читайте также: Сварочный аппарат своими руками: как сделать в домашних условиях? Чертежи, схемы и лучшие проекты для начинающих (85 фото)

  • Электромотор последовательного возбуждения. Их устойчивость к перегрузкам более внушительная. Часто встречаются в бытовых электроприборах,
  • Устройства параллельного возбуждения. У них сопротивление не отличается большими показателями, количество витков существенно больше, чем у аналогов,
  • Однофазный электромотор. Его очень легко изготовить своими руками, мощность на приличном уровне, а вот коэффициент полезного действия оставляет желать лучшего.

Что такое широтно-импульсная модуляция?

схема шим регулятора

Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:
1. Аналоговый.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Регуляторы оборотов

Теперь возвращаемся к теме регулятора оборотов. Все доступные сегодня схемы можно разделить на две большие категории:

  • Стандартная схема регулятора оборотов,
  • Модифицированные устройства контроля оборотов.

Разберемся в особенностях схем подробнее.

В конструкции регулятора применена интегральная схема

Стандартные схемы

Стандартная схема регулятора коллекторного электромотора имеет несколько особенностей:

  • Изготовить динистор не составит труда. Это важное преимущество устройства,
  • Регулятор отличается высокой степенью надежности, что положительно сказывается в течение его периода эксплуатации,
  • Позволяет комфортно для пользователя менять обороты двигателя,
  • Большинство моделей основаны на тиристорном регуляторе.

Если вас интересует принцип работы, то такая схема выглядит довольно просто.

  1. Заряд тока от источника 220 Вольт идет к конденсатору.
  2. Далее идет напряжение пробоя динистора через переменный резистор.
  3. После этого происходит непосредственно сам пробой.
  4. Симистор открывается. Этот элемент несет ответственность за нагрузку.
  5. Чем выше окажется напряжение, чем чаще будет происходить открытие симистора.
  6. За счет подобного принципа работы происходит регулировка оборотов электродвигателя.
  7. Наибольшая доля подобных схем регулировки электродвигателя приходится на импортные бытовые пылесосы.
  8. Но при использовании стандартной схемы регулятора оборотов важно понимать, что он обратной связью не обладает. И если с нагрузкой произойдут изменения, обороты электродвигателя придется настраивать.

Модифицированная схема

Прогресс не стоит на месте. Несмотря на удовлетворительные характеристики стандартной схемы регулятора оборотов двигателя, усовершенствования никому еще не навредили.

Наиболее часто применяемыми схемами являются две:

  • Реостатная. Из названия становится очевидно, что здесь основой выступает реостатная схема. Такие регуляторы высокоэффективные при смене количества оборотов электродвигателя. Высокие показатели эффективности объясняются использованием силовых транзисторов, отбирающих часть напряжения. Так меньшее количество тока из источника 220 Вольт поступает на двигатель, ему не приходится работать с большой нагрузкой. При этом схема имеет определенный недостаток большое количество выделяемого тепла. Чтобы регулятор работал длительное время, для электроинструмента потребуется активное постоянное охлаждение,
  • Интегральная. Для работы интегрального устройства регулирования используется интегральный таймер, который отвечает за нагрузку на электродвигатель. Здесь могут быть задействованы всевозможные транзисторы. Это обусловлено наличием микросхемы в конструкции с большими параметрами выходного тока. При нагрузке менее 0,1 Ампер, все напряжение идет непосредственно на микросхему, обходя транзисторы. Чтобы регулятор работал эффективно, на затворе требуется наличие напряжения в 12 Вольт. Из этого вытекает, что электрическая цепь и напряжение питания обязаны отвечать данному диапазону.
Читайте также:
Пластиковый потолок в загородном доме - особенности, плюсы и минусы

Схема №1

шим регулятор

Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат – значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы – доступность и простота элементов. Недостатки – сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

широтно импульсная модуляция

Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Тестирование ШИМ контроллера

Для тестирования контроллера будем использовать набор ячеек литиевых батарей с номинальным напряжением 80 В, которые применяются для данного электрического велосипеда. Контроллер временно подключен к аккумулятору и мотору, который прикреплен к велосипеду, чтобы приводить в движение заднее колесо. Поворачивая потенциометр по часовой стрелке, двигатель должен начать вращаться постепенно и увеличивать скорость, пропорциональную вращению ручки.

Чтобы проверить регулятор скорости на реальной нагрузке, надо смонтировать все на своем месте. Посмотреть как он держит нагрузку, вес, долгое время работы и воздействие атмосферной влажности (лучше покрыть плату лаком).

Печатная плата ШИМ-регулятора

Разработка отдельной печатной платы поможет не только компактно объединить все элементы, но также позволит использовать этот готовый ШИМ-модуль в других проектах — и не только с двигателями постоянного тока, ШИМ-модуляция идеально подходит, например, для управления нагревателями.

Идея проектирования печатной платы может показаться сложной, но стоит иметь свои собственные печатные платы. Имея это в виду, автор спроектировал печатную плату для модуля регулятора скорости.

При проектировании печатной платы самое важное, что нужно помнить, это обеспечить правильную ширину токовых путей. Высокий ток, который должен проходить через транзисторы к двигателю, также будет проходить через фольгу платы и нагревать её.

На печатной плате добавлены монтажные отверстия, которые облегчат установку модуля в готовый электробайк, а также место для установки радиатора и вентилятора, который будет охлаждать работающие транзисторы.

Чтобы облегчить сборку нужно начать с самых маленьких элементов на печатной плате: в нашем случае это преобразователь LM5008 и компоненты SMD. После пайки дискретных компонентов инвертора LM5008 можем припаять большую катушку по источнику питания и начать пайку более крупных компонентов. В конце установить таймер 555, а затем силовые транзисторы.

При таком огромном количестве энергии, с которым имеет дело создаваемый контроллер, будет выделяться много тепла. Полевые транзисторы будут в основном нагреваться, поэтому надо обеспечить их достаточным охлаждением. Это делается с помощью радиатора с вентилятором.

После установки радиатора схема готова к настройке и дальнейшей работе.

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных источников питания для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Читайте также:
Ремонт посудомоечных машин Электролюкс в домашних условиях: типичные неисправности и их устранение

Как сделать простую схему стабилизированного регулятора постоянного напряжения на двух транзисторах самому.

Особенностями предлагаемого устройства являются использование D — триггера для построения генератора, синхронизированного с сетевым напряжением, и способ управления симистором с помощью одиночного импульса, длительность которого регулируется а втоматически. В отличие от других способов импульсного управления симистором, указанный способ некритичен к наличию в нагрузке индуктивной сос тавляющей. Импульсы генератора следуют с периодом приблизительно 1,3 с . Питание микросхемы DD 1 производится током , протекающим через защитный диод , находящийся внутри микросхемы между ее выводами 3 и 14. Он течет , когда напряжение на этом выводе , соединенном с сетью через резистор R 4 и диод VD 5, превышает на пряжение стабилизации стабилитрона VD 4.

К. ГАВРИЛОВ, Радио, 2011, №2, с. 41

ДВУХКАНАЛЬНЫЙ РЕГУЛЯТОР МОЩНОСТИ НАГРЕВАТЕЛЬНЫХ ПРИБОРОВ

Регулятор содержит два независимых канала и позволяет поддерживать требуемую температуру для различных нагру зок : температуры жала паяльника , электроутюга , электрообогревателя , электроплиты и др . Глубина регулирования составляет 5…95% мощности питающей сети. Схема регулятора питается выпрямленным напряжением 9…11 В с трансформаторной развязкой от сети 220 В с малым током потребления .

В.Г. Никитенко, О.В. Никитенко, Радiоаматор, 2011, №4, с . 35

СИМИСТОРНЫЙ РЕГУЛЯТОР МОЩНОСТИ

Особенностью этого симисторного регулятора является то , что число подаваемых на нагрузку полупериодов сетевого на пряжения при любом положении органа управления оказывается четным . В результате, не образуется постоянная составляющая потребляемого тока и , следовательно , отсутствует подмагничивание магнитопроводов подклю ченных к регулятору трансформа торов и электродвигателей . Мощность р егулируется изменением числа периодов переменного на пряжения , приложенного к нагруз ке за определенный интервал времени . Регулятор предназначен для ре гулирования мощности приборов , обладающих значительной инерци ей ( нагревателей и т . п .). Для регу лирован ия яркости освещения он не пригоден , т . к . лампы будут сильно мигать .

В . КАЛАШНИК , Н . ЧЕРЕМИСИНОВА , В . ЧЕРНИКОВ , Радиомир, 2011, № 5 , с. 17 — 18

БЕСПОМЕХОВЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ

Большинство регуляторов напряжения (мощности) выполнено на тиристорах по схеме с фазоимпульсным управлением. Как известно, подобные устройства создают заметный уровень радиопомех. Предлагаемый регулятор свободен от этого недостатка. Особенность предлагаемого регулятора — управление амплитудой переменного напряжения, при котором не искажается форма выходного сигнала, в отличие от фазоимпульсного управления. Регулирующий элемент — мощный транзистор VT1 в диагонали диодного моста VD1-VD4, включенного последовательно с нагрузкой. Основной недостаток устройства — его низкий КПД. Когда транзистор закрыт, ток через выпрямитель и нагрузку не проходит. Если на базу транзистора подать напряжение управления, он открывается, через его участок коллектор—эмиттер, диодный мост и нагрузку начинает проходить ток. Напряжение на выходе регулятора (на нагрузке) увеличивается. Когда транзистор открыт и находится в режиме насыщения, к нагрузке приложено практически все сетевое (входное) напряжение. Управляющий сигнал формирует маломощный блок питания, собранный на трансформаторе Т1, выпрямителе VD5 и сглаживающем конденсаторе С1. Переменным резистором R1 регулируют ток базы транзистора, а следовательно, и амплитуду выходного напряжения. При перемещении движка переменного резистора в верхнее по схеме положение напряжение на выходе уменьшается, в нижнее — увеличивается. Резистор R2 ограничивает максимальное значение тока управления. Диод VD6 защищает узел управления при пробое коллекторного перехода транзистора. Регулятор напряжения смонтирован на плате из фольгиро- ванного стеклотекстолита толщиной 2,5 мм. Транзистор VT1 следует установить на теплоотвод площадью не менее 200 см2. При необходимости диоды VD1-VD4 заменяют более мощными, например Д245А, и также размещают на теплоотводе.

Если устройство собрано без ошибок, оно начинает работать сразу и практически не требует налаживания. Необходимо лишь подобрать резистор R2. С регулирующим транзистором КТ840Б мощность нагрузки не должна превышать 60 Вт. Его можно заменить приборами: КТ812Б, КТ824А, КТ824Б, КТ828А, КТ828Б с допустимой рассеиваемой мощностью 50 Вт.; КТ856А -75 Вт.; КТ834А, КТ834Б — 100 Вт.; КТ847А-125 Вт. Мощность нагрузки допустимо увеличить, если регулирующие транзисторы одного типа включить параллельно: коллекторы и эмиттеры соединить между собой, а базы через отдельные диоды и резисторы подключить к движку переменного резистора. В устройстве применим малогабаритный трансформатор с напряжением на вторичной обмотке 5…8 В. Выпрямительный блок КЦ405Е можно заменить любым другим или собрать из отдельных диодов с допустимым прямым током не менее необходимого тока базы регулирующего транзистора. Эти же требования относятся и к диоду VD6. Конденсатор С1 — оксидный, например, К50-6, К50-16 и т. д., на номинальное напряжение не менее 15 В. Переменный резистор R1 — любой с номинальной мощностью рассеяния 2 Вт. При монтаже и налаживании устройства следует соблюдать меры предосторожности: элементы регулятора находятся под напряжением сети. Примечание: Для уменьшения искажения синусоидальной формы выходного напряжения попробуйте исключить конденсатор С1. А. Чекаров

Читайте также:
Приставная лестница из дерева – технология изготовления + Видео

Регулятор напряжения на MOSFET — транзисторах ( IRF540, IRF840 )

Олег Белоусов , Электрик , 201 2 , № 12 , с. 64 — 66

Так как физический принцип работы полевого транзистора с изолированным затвором отличается от работы тиристора и симмистора , то его в течение периода сетевого напряжения можно многократно включать и выключать . Частота коммутации мощных транзисторов в данной схеме выбрана 1 к Гц . Достоинством этой схемы является простота и возможность изменять скважность импульсов , мало изменяя при этом частоту повторения импульсов .

В авторской конструкции получены следующие длительности импульсов : 0,08 мс , при периоде следования 1 мс и 0,8 мс при периоде следования 0,9 мс , в зависимости от положения движка резистора R2. Отключить напряжение на нагрузке можно , замкнув выключатель S 1, при этом на затворах MOSFET — транзисторов устанавливается напряжение , близкое к напряжению на 7 выводе микросхем ы . При разомкнутом тумблере напряжение на нагрузке в авторском экземпляре устройства можно было изменять рези стором R 2 в пределах 18…214 В ( измерено прибором типа TES 2712). Принципиальная схема подобного регулятора показан на рисунке ниже. В регуляторе использется отечественная микросхема К561ЛН2 на двух элементах которой собран генератор с регулируемой суважностью, а четыре эелемента используюся как усилители тока.

Для исключения помех по сети 220 послеловательно нагрузке рекомендуется подключить дроссель намотанный на ферритовом кольце диаметром 20…30 мм до заполнения проводом 1 мм.

Генератор тока нагрузки на биполярных транзисторах ( КТ817 , 2SC3987 )

Бутов А . Л . , Радиоконструктор, 201 2 , № 7 , с. 11 — 12

Для проверки работоспособности и настройки источников питания удобно использовать имитатор нагрузки в виде регулируемого генератора тока . С помощью такого устройства можно не только быстро настроить блок питания , стабилизатор напряжения , но и, например , использовать его как генератор стабильного тока для зарядки , разрядки аккумуля торных батарей , устройств электролиза , для электрохимического травления печатных плат , как стабилизатор тока питания электроламп , для «мягкого» пуска коллекторных электродвигателей . Устройство является двухполюсником , не требует дополнитель ного источника питания и может включаться в разрыв цепи питания различных устройств и исполнительных механизмов . Диапазон регулировки тока от 0…0 , 16 до 3 А , максимальная потребляемая ( рассеиваемая ) мощность 40 Вт , диапазон питающих напряжений 3…30 В постоянного тока . Ток потребления регулируется переменным резистором R 6. Чем левее по схеме движок резистора R6, тем больший ток потребляет устрой ство . При разомкнутых контактах переключателя SA 1 резистором R6 можно установить ток потребления от 0,16 до 0,8 А . При замкнутых контактах этого переключателя ток регулируется в интервале 0,7… 3 А .

Принципиальная схема генератора тока

Чертеж печатной платы генератора тока

Имитатор автомобильного аккумулятора ( КТ827 )

В . МЕЛЬНИЧУК , Радиомир, 201 2 , № 1 2 , с. 7 — 8

При переделке компьютерных импульсных блоков питания ( ИБП ) подзарядные устройства ( ЗУ ) для автомобильных аккумуляторов готовые изделия в процессе наладки необходимо чем — то нагружать . Поэтому я решил изготовить аналог мощного стабилитрона с регулируемым напряжением стабилизации , схем а которого показана на рис . 1 . Резистором R 6 можно регулировать напряжение стабилизации от 6 до 16 В . Всего было сделано два таких устройства . В первом варианте в качестве транзис торов VT 1 и VT 2 применены КТ 803. Внутреннее сопротивление такого стабилитрона оказалось слишком велико . Так , при токе 2 А напряжение стабилизации составило 12 В , а при 8 А — 16 В . Во втором варианте использованы составные транзисторы КТ827. Здесь при токе 2 А напряжение стабилизации составило 12 В , а при 10 А — 12,4 В .

Читайте также:
Отделка квартир деревянными панелями своими руками

Однако при регулировке более мощных потребителей, например электрокотлов симисторные регуляторы мощности становятся не пригодными — уж слишком большую помеху по сети они будут создавать. Для решения этой проблемы лучше использовать регуляторы с бОльшим периодом режимов ВКЛ-ВЫКЛ, что однозначно исключает возникновение помех. Один из вариантов схемы приведен ТУТ.

Адрес администрации сайта

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Читать также: Импульсный блок питания 12 вольт своими руками

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

↑ Схема регулятора мощности на полевых транзисторах

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

Впрочем, как бы там ни было, я решил собрать
регулятор на полевых транзисторах
(далее ПТ) с ШИ-управлением. В отличие от схем на ПТ с фазоимпульсным управлением, где существует привязка схемы к частоте сетевого напряжения, при ШИ-управлении схемой управления генерируются собственная последовательность импульсов, модулируя сетевую частоту. Изменением ширины этих импульсов достигается изменение значения выходного напряжения.

Схема регулятора получается достаточно простой, малошумящей и работоспособной при любых значениях тока в нагрузке. Начну, пожалуй, с эксплуатационных характеристик. До 200 Вт полевые транзисторы практически не греются

(для этого обеспечено их полное открывание импульсами схемы управления). При эксплуатации регулятора с нагрузкой, имеющей большую, чем 200 Вт мощность, на ПТ следует установить радиаторы. Так, например, при мощности нагрузки 1 кВт, на открытом канале ПТ, имеющем, предположим, сопротивление 0,1 Ом, падение напряжения составит около 0,45 В, а рассеиваемая мощность превысит 2 Вт, что неизбежно вызовет разогрев кристалла транзистора. При длительной работе на мощную нагрузку (от 500 Вт и выше) может потребоваться обдув радиатора. При работе с мощным трансформатором (от UPS — в понижающем включении), вторичная обмотка трансформатора была нагружена 12-вольтовой автомобильной галогенной лампой мощностью 190 Вт.

↑ Особенности схемы, применённые детали

Схема управления выполнена на
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

В схеме использованы самые доступные детали. Так, например, полевые транзисторы — от компьютерных БП (напряжения и токи указаны на схеме), но могут быть использованы любые другие с учётом работы на конкретную нагрузку. При мощности нагрузки до 200 Вт регулятор может иметь очень малые (со спичечный коробок) габариты.

Нужен ШИМ регулятор оборотов

Помогите найти PWM регулятор оборотов двигателя постоянного тока желательно с алиекспресса, необходимо не ниже 25 КГЦ как посоветовали, На алиекспрессе выше 25 КГЦ не нашел. Примерно такой https://ru.aliexpress.com/item/32882479732.html?spm=a2g0s.9042311.0.0.6a1833edt0yZFD

Читайте также:
Пленочная теплица своими руками
Гений мысли

ru.aliexpress.com

459.19 руб. 8% СКИДКА|Новый 12 V 24 V 20A Макс. ШИМ DC мотор бесступенчатый регулятор переменной скорости 25 kHz переключатель популярный-in Контроллер двигателя from Товары для дома on Aliexpress.com | Alibaba Group

Александп
Бывалый

ru.aliexpress.com

459.19 руб. 8% СКИДКА|Новый 12 V 24 V 20A Макс. ШИМ DC мотор бесступенчатый регулятор переменной скорости 25 kHz переключатель популярный-in Контроллер двигателя from Товары для дома on Aliexpress.com | Alibaba Group

Гений мысли
Александп
Бывалый

Советовали не ниже 25 думаю лучше с запасом. Дело в том что тот который я привел в пример 20 кгц, от него вентиляторы стартуют на высоких оборотах.

CHEKM
Друг форума

Советовали не ниже 25 думаю лучше с запасом. Дело в том что тот который я привел в пример 20 кгц, от него вентиляторы стартуют на высоких оборотах.

Работаю Sigma, Z3X, Infinity, UFSt, MRT, BST, HCU, SEtool, XTC2Clip, Triton и др.
Для поднятия неисправных устройств пишите в ЛС в Н.Новгороде

Александп
Бывалый
CHEKM
Друг форума

В смысле не то? у меня 18 штук дельт 120мм подключены на 12 вольт и шим сигнал идёт с этой платы
вам шим нужен или регулятор напряжения?

Работаю Sigma, Z3X, Infinity, UFSt, MRT, BST, HCU, SEtool, XTC2Clip, Triton и др.
Для поднятия неисправных устройств пишите в ЛС в Н.Новгороде

ukrcat
Свой человек
Александп
Бывалый

шим по питанию, я привел образец с ссылкой на али. На самом вентиляторе нет шим контролера, там просто + и –

CHEKM
Друг форума

Работаю Sigma, Z3X, Infinity, UFSt, MRT, BST, HCU, SEtool, XTC2Clip, Triton и др.
Для поднятия неисправных устройств пишите в ЛС в Н.Новгороде

Александп
Бывалый
CHEKM
Друг форума

он регулирует выходное напряжение, у меня с 4.5-5.0 вольт стартовали
а от напряжения уже зависит скорость вращения ваших вентиляторов

Работаю Sigma, Z3X, Infinity, UFSt, MRT, BST, HCU, SEtool, XTC2Clip, Triton и др.
Для поднятия неисправных устройств пишите в ЛС в Н.Новгороде

Viper70
Бывалый

Нет смысла гнаться за 25кГц. Это чтобы не было писка при малых оборотах. 20кГц тоже хорошо. То что стартует на высоких оборотах – сделано специально. Некоторые вентиляторы умеют крутиться на малом напряжении, но не могут стартовать. Поэтому при старте полные обороты.

NetGel
Свой человек

У меня есть несколько видов 12 см.дельт с али. Выполненные более качественно и похуже. Те которые получше, вообще не крутят пока на них не подашь сигнал от шим-контролера (использую примерно такой как выше дал ссылку CHEKM), те которые похуже при подаче на них 12 вольт крутят на 100% оборотов и их можно регулировать обычной крутилкой, как в первом посте и которая, по моему, обычный регулятор напряжения и к шим-контролеру отношения не имеет. Многие (в том числе и китайцы с али) не понимают что такое генератор широтно-импульсной модуляции и путают теплое с мягким. В том генераторе по ссылке выше есть настройка герцовки до 100 кГц (нужно выставить 25, но и меньше работает) и регулировка коэффициента заполнения, на вентиль постоянно подается 12 вольт и мои вентили стартуют уже с 5-8%, что достаточно тихо. Если же регулировать обычным регулятором напряжения то старт примерно с 40%.

Lucky Luke
Бывалый

А есть не регулятор оборотов , а просто плата, куда можно подключить несколько вентиляторов Дельта. На Али я видел подобные, но они для обычных вентиляторов, не более 2А .

CHEKM
Друг форума

Полноценный кулер это кулер с 4-мя контактами, + – PWM и от датчика скорости
Датчик скорости нафиг нам не нужен
Сажаем + и – кулера на питание 12 вольт найти несложно
Датчик скорости нам не нужен
PWM на регулятор скорости шим
или работает при подключении PWM-контакта на видеокарту ASUS ROG Strix(есть у них там доп разъёмы)
——————–
Проверьте сначала работу одного кулера на 12 вольтах, а потом ищите где у вас PWM
——————-
В отличии от регулятора напряжения, ничего не греется и кулер при уменьшении
скважности PWM(шим) и всё том-же входном напряжении 12 вольт, начинает потреблять
меньший ток(потреблять меньше мощность) снижает скорость оборотов
================================

Читайте также:
Подвесы для потолка Армстронг и элементы каркаса

Telegram: Contact @sonm_test_ru

на регулятор ШИМ всего 3 контакта , + – и (шим выходит на все кулеры, на delta похеру от (10 до 100)Кгц)

Работаю Sigma, Z3X, Infinity, UFSt, MRT, BST, HCU, SEtool, XTC2Clip, Triton и др.
Для поднятия неисправных устройств пишите в ЛС в Н.Новгороде

foont
Бывалый
Александп
Бывалый

У меня есть несколько видов 12 см.дельт с али. Выполненные более качественно и похуже. Те которые получше, вообще не крутят пока на них не подашь сигнал от шим-контролера (использую примерно такой как выше дал ссылку CHEKM), те которые похуже при подаче на них 12 вольт крутят на 100% оборотов и их можно регулировать обычной крутилкой, как в первом посте и которая, по моему, обычный регулятор напряжения и к шим-контролеру отношения не имеет. Многие (в том числе и китайцы с али) не понимают что такое генератор широтно-импульсной модуляции и путают теплое с мягким. В том генераторе по ссылке выше есть настройка герцовки до 100 кГц (нужно выставить 25, но и меньше работает) и регулировка коэффициента заполнения, на вентиль постоянно подается 12 вольт и мои вентили стартуют уже с 5-8%, что достаточно тихо. Если же регулировать обычным регулятором напряжения то старт примерно с 40%.

CHEKM
Друг форума

Работаю Sigma, Z3X, Infinity, UFSt, MRT, BST, HCU, SEtool, XTC2Clip, Triton и др.
Для поднятия неисправных устройств пишите в ЛС в Н.Новгороде

ШИМ-регулятор на микроконтроллере ATmega8515

В своей статье я хочу представить проект ШИМ-регулятор на микроконтроллере Atmega8515 (даташит PDF) для управления какой-либо нагрузкой.

Что же такое ШИМ? ШИМ – это широтно-импульсная модуляция, иначе говоря-управление средним значением напряжения на нагрузке путём изменения скважности импульсов, управляющих ключом.
Скважность — один из классификационных признаков импульсных систем, определяющий отношение его периода следования (повторения) к длительности импульса.

Чтобы все встало на свои места привожу поясняющую картинку.

Принцип ШИМ

В данном примере будем управлять яркостью светодиода(5-ти ступенчатая регулировка) с помощью двух тактовых кнопок(+/-).

Итак для сборки ШИМ нам понадобится:

1) Микроконтроллер ATmega8515.
2) Тактовая кнопка – 2шт;
3) Резистор на 4,7кОм – 2шт;
4) Резистор на 200 Ом-1шт;
5) Панелька под микросхему DIP40;
6) Любой светодиод-1шт;
7) Стабилизированный источник питания для МК на 3-5В.

Принципиальная схема устройства:

Схема

Это устройство может изменять скважность импульсов с помощью двух тактовых кнопок S3(+) и S4(-), соответственно будет изменяться яркость светодиода.

Исходный код программы написан в среде CodeVisionAvr и представлен в конце статьи.

Небольшие комментарии к исходному коду:

В этой части кода мы прописываем обработчик внешнего прерывания(INT0/INT1).

Настраиваем порты микроконтроллера, устанавливаем условие глобальных прерываний от INT0 и INT1, разрешаем глобальные прерывания.

Цикл,Оператор выбора из множества вариантов, регистром OCR0 настраивается скважность импульса (1-255).

Фото готового устройства:

DSCN6477.jpg

Схема безобразно проста и чтобы убедится в ее работоспособности устройство было собрано на обычной пластиковой обложке от какой-то папки.

Можно собрать ШИМ и на печатной плате (Плата нарисована в программе SprintLayout 5.0):

Плата

Несколько осциллограмм демонстрирующих изменение скважности импульсов с помощью двух тактовых кнопок::

Значение регистра OCR0= 50 Значение регистра OCR0= 100

DSCN6481.jpgDSCN6482.jpg

Значение регистра OCR0= 150 Значение регистра OCR0= 200

DSCN6483.jpgDSCN6484.jpg

Значение регистра OCR0= 254

DSCN6485.jpg

Без изменения прошивки к микроконтроллеру можно подключить любой 7-ми сегментный индикатор с общим катодом, который будет отображать номер режима работы ШИМ-регулятора(от 1 до 5). Катод индикатора подключается на 39 ножку МК, а анод через токоограничительные резисторы (100-250 Ом) на 21-27 ножки МК.

mc211_sch2.png

Фьюзы для прошивки выставлять не надо! Оставляем их стандартными.

Это устройство имеет широкое применение. Например его можно использовать для управления яркостью светодиодов, управлять оборотами вентилятора, применить для регулировки оборотов двигателя сверлильного станочка и т.п.

Читайте также:
Проекты домов-близнецов: строгая геометрия коттеджей Twins

Более мощную нагрузку (вентилятор, большое кол-во светодиодов) необходимо подключать через транзистор.

Синусоидальный сигнал

А здесь будет приведен пример, как получить синусоидальный сигнал.

Схема не представляет никаких трудностей т.к. здесь используется один микроконтроллер (Atmega8515) и низкочастотный фильтр (R1 и C1) через который мы пропускаем генерируемый сигнал и на выходе получаем постоянное напряжение.

Схема

В данном случае получается синус с частотой 35 Гц.

Частоту синуса можно высчитать по следующей формуле:

Fs = Fckl/(256 * N * M)

Fs=8000000/(256 * 8 * 112)=34.8 Гц.
где Fclk – тактовая частота микроконтроллера, N – коэффициент деления предделителя, M – число отсчетов сигнала.

Прошивка писалась в среде CodeVisionAvr, исходники прилагаются в конце статьи.

Для построение синуса была написана библиотека, в которой прописан константный массив, содержащий значения синуса.

ШИМ регулятор тока ТЭНа ( TRUE_RMS)

rms.jpg ШИМ регулятор тока ТЭНа ( TRUE_RMS)

Предлагаю Вашему вниманию ШИМ-регулятор (в будущем-Стабилизатор)
TRUE_RMS тока ТЭНа, построенный на ARDUINO
Датчиком тока является микросхема ACS712 выпускающаяся с предельным
значение 5А,20А,30А, измеряющая постоянный или переменный ток.
Регулятор позволяет регулировать задержку включения Триака от 0 до 100%
времени полупериода сети (0-10мс) взависимости от переменной DIM.
Переменная Z1 зависит от средне квадратичного значения тока в цепи.
Массштабируя ее и сравнивая ее с уставкой и воздействуя на переменную DIM
можно застабилизировать ток в цепи ТЭНа.
По деньгам это обходится так:
Arduino mini – 6.32$
ACS712 – 3,30$
BTA24-600 – 3,00
+ 3 оптрона = 3$
Итого порядко 16$ + немного придется потрудится.
rms.jpg ШИМ регулятор тока ТЭНа ( TRUE_RMS). Автоматика.

true_rms.7.jpg ШИМ регулятор тока ТЭНа ( TRUE_RMS)

Скетч можно встаивать в другую программу.
Т.к. время измерения чуть больше 1 сек то его можно оформить в виде функции и
запускать вместо задежки Delay во время преобразования температуры от датчиков 18в20.
Регулировка момента открытия триака работает в фоновом режиме и не занимает процессор!
В качестве датчика тока можно использовать трансформаторы тока типа АС1020.
На следующей неделе попробую измерить ток положительных и отрицательных полуволн раздельно. Интересно что получится.И сделаю стабилизатор. Кроме того сделаю плавное включение ТЭНов, предохраняющее от тепловых ударов при первом включении.
На фото видно значение 8217 измерений за 100 полупериодов
и среднеквадратичное значение тока в цепи 100 вт. лампочки (х10).
true_rms.7.jpg ШИМ регулятор тока ТЭНа ( TRUE_RMS). Автоматика.

Посл. ред. 16 Марта 13, 22:36 от ace

Sambedded Кандидат наук Vancouver 366 87

Чтобы не ставить две оптопары в цепь детектирования 0 можно просто включить одну через диодный мостик или еще проще – поставить одну оптопару типа H11AA1

Посл. ред. 16 Марта 13, 19:47 от Sambedded

murlum Студент Kr-sk 31 7

Также интересуюсь темой регулировки мощности в нагрузке, и недавно наткнулся на статью схемотехника и программирование устройств фазового регулирования переменного напряжения. В статье есть таблица с расчетом времени задержки угла отпирания тиристора для получения равномерного шага мощности, и пример программирования на AVR. Думаю для ознакомления будет полезна. Ссылку как смогу добавлю, а пока архив статьи в приложенном файле.
p.s. Если в имя архива добавить пару косых получиться адрес.

igorila Студент Ялта 26 1

Вышел на пенсию ,а так как пенсии у нас,россиян,огромные,купил дисцилятор Крестьянка 2. Греть или на газу,или на электроплитке,или на индукции. Замучался отбирать головы. А так как лень двигатель прогресса,то я врезал в него(или её?)тэн на 2 кВт.,и приобрёл у китайских братьев регулятор мощности на 25А.Стоит на Али где то 460руб.Регулирует плавно от ноля до полной. Теперь включаю агрегат,на фазу вешаю тококлещи. Когда отбираю головы ставлю мощность около 350Вт,и капает как надо. Очень удобно,китайцам пламенный привет.

Добавлено через 1ч. 3мин.:

Вот этот китайский регулятор. Извините,с мобилки сразу не смог загрузить фото.

TMPDOODLE1497275582186.jpg ШИМ регулятор тока ТЭНа ( TRUE_RMS). Автоматика. TMPDOODLE1497275544721.jpg ШИМ регулятор тока ТЭНа ( TRUE_RMS). Автоматика.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: