Прочность сварного шва на разрыв таблица

Расчет на прочность сварного шва

Механические свойства характеризуют сопротивление металла деформации и разрушению под действием механических сил (нагрузки).

К основным механическим свойствам относят:

— прочность — пластичность — ударную вязкость — твердость

Прочность – это способность металла не разрушаться под действием механических сил (нагрузки).

Пластичность – это способность металла изменять форму (деформироваться) под действием механических сил (нагрузки) без разрушения.

Ударная вязкость определяет способность металла противостоять ударным (динамическим) механическим силам (ударным нагрузкам).

Твердость – это способность металла сопротивляться проникновению в него других более твердых материалов.

Виды и условия механических испытаний металлов

Для определения механических свойств выполняют следующие виды испытаний:

— испытания на растяжение; — испытания на статический изгиб; — испытания на ударный изгиб; — измерение твердости.

К условиям испытаний образцов относятся: температура, вид и характер приложения нагрузки к образцам.

Температура проведения испытаний:

— нормальная (+20°С); — низкая (ниже +20°С, температура 0…-60°С); — высокая (выше+20°С, температура +100…+1200°С).

Вид нагрузок:

растяжение
сжатие
изгиб
кручение
срез

Характер приложения нагрузки:

— нагрузка возрастает медленно и плавно или остаётся постоянной — статические испытания; — нагрузка прилагается с большими скоростями; нагрузка ударная — динамические испытания; — нагрузка многократная повторно-переменная; нагрузка изменяется по величине или по величине и направлению (растяжение и сжатие) — испытания на выносливость.

Образцы для механических испытаний

Механические испытания выполняют на стандартных образцах. Форма и размеры образцов устанавливаются в зависимости от вида испытаний.

Для механических испытаний на растяжение используют стандартные цилиндрические (круглого сечения) и плоские (прямоугольного сечения) образцы. Для цилиндрических образцов в качестве основных приняты образцы диаметром dо=10 мм короткий lо=5×do = 50 мм и длинный lо=10×do = 100 мм.

Короткий круглый образец

Длинный круглый образец

Плоские образцы имеют толщину равную толщине листа, а ширина устанавливается равной 10, 15, 20 или 30 мм.

Плоский образец без головок для захватов разрывной машины

Плоский образец с головками

Зависимость качества сварки от параметров настройки аппарата

[Дуговая сварка] выполняется с определенными значениями тока и напряжения, что в итоге влияет на глубину провара и качество сплавления металла двух деталей в границах сварочной ванны. Основные приемы, которыми пользуются опытные сварщики для формирования качественного шва:

глубина провара растет при нарастании силы тока при неизменном напряжении — растет температура и глубина прогрева металла;

ширина шва и катета нарастает при росте напряжения и неизменной силе тока, однако при нарушении баланса возможен непровар стыка;

при росте скорости хода электрода снижается глубина проваривания и уменьшается ширина, а при превышении нормативного значения 50 м/ч возможно появление ряда [дефектов сварного шва], связанных с недостаточным прогревом металла;

выпуклая и вогнутая поверхность по катету сварного шва имеют разные прочностные характеристики, при этом первая получается при использовании вязких электродов.

При расчетах принимается во внимание толщина двух заготовок, но максимальные параметры тока и напряжения берутся по тонкой детали во избежание прожога. Максимальная и минимальная длина сварочного шва рассчитывается по приведенной в ГОСТ таблице.

ВАЖНО ЗНАТЬ: Контактная стыковая сварка

Механические свойства, определяемые при статических испытаниях

Статическими называют испытания, при которых прилагаемая нагрузка к образцу возрастает медленно и плавно.

При статических испытаниях на растяжение определяются следующие основные механические характеристики металла:

— предел текучести (σ т); — предел прочности или временное сопротивление (σ в); — относительное удлинение (δ); — относительное сужение (ψ).

Читайте также:
Сверлильный патрон Как выбрать лучший?

Предел текучести – это напряжение, при котором образец деформируется без заметного увеличения растягивающей нагрузки.

Предел прочности – это напряжение при максимальной нагрузке, предшествующей разрушению образца.

Относительное удлинение – это отношение приращения длины образца после разрушения к его начальной длине до испытания.

Относительное сужение – это отношение уменьшения площади поперечного сечения образца после разрушения к его начальной площади до испытания.

При испытании на статическое растяжение железо и другие пластические металлы имеют площадку текучести, когда образец удлиняется при постоянной нагрузке Рm.

При максимальной нагрузке Рmax в одном участке образца появляется сужение поперечного сечения, так называемая “шейка”. В шейке начинается разрушение образца. Так как сечение образца уменьшается, то разрушение образца происходит при нагрузке меньше максимальной. В процессе испытания приборы рисуют диаграмму растяжения, по которой определяют нагрузки. После испытания разрушенные образцы складывают вместе и измеряют конечную длину и диаметр шейки. По этим данным рассчитывают прочность и пластичность.

Как рассчитать на прочность сварочные швы

В зависимости от того, как размещены при сваривании соединяющие элементы, выделяют разные типы швов: угловые, стыковые, тавровые, нахлесточные. На фото ниже можно посмотреть разные способы соединения между собой свариваемых деталей.

Фото: виды сварных швов

Для каждого вида соединений расчет сварных швов на прочность проводится индивидуально и с учетом разных параметров. Прочностные значения стыковых швов определяются по номинальному сечению проваренного участка, на котором отсутствуют наплывы. Для угловых соединений прочностные показатели определяет катет.

В любом случае прежде чем осуществлять расчет прочности сварного шва, необходимо вычислить площадь его поперечного сечения. Установить сечение можно при умножении длины и толщины сварочного соединения.

Определить допускаемое усилие в стыке при растяжении можно по формуле: Р = σp × S × I

При сжатии формула несколько другая: Р = σсж × S × I

Условные обозначения в формулах следующие:

  • S — толщина элементов, которые соединяются техникой сваривания;
  • I — длина сварочного соединения;
  • σp — допустимое напряжение при растяжении;
  • σсж — допустимое напряжение при сжатии.

Вычислить какой прочностью будет обладать нахлесточный шов можно по формуле: Р = τср × 0,7К × I, в которой:

  • Р — допустимо возможное усилие;
  • τср — показатель допускаемого напряжения металла, наплавленного при срезе;
  • К — длина катета, которая в формуле проставляется с коэффициентом 0,7;
  • I — протяжность соединительного стыка.

Вычисляя несущие возможности стыкового шва необходимо ориентироваться на напряжение, которое является допустимым в самом опасном сечении (s), а также на напряжение, зависящее от предела текучести (HSЭ). Выдерживание соотношений этих двух показателей является обязательным и только при полном их соответствии элемент металлоконструкции будет удовлетворять все выдвигаемые к прочностным характеристикам требования.

Основная задача при подготовке к свариванию металлоконструкций — не превысить максимально допускаемые напряжения рассчитывая прочность сварного шва на разрыв, таблица коэффициентов которого есть на специализированных сайтах в интернете в свободном доступе.

Онлайн расчет прочности стыков

Проведение предварительных расчетов прочности перед свариванием металлоизделий позволяет предотвратить неточности и браки, приводящие к разрушению конструкций. Чтобы безошибочно провести расчет сварных швов на прочность примеры готовых вычислений могут послужить в качестве инструкций правильности выполнения всех действий. А исчислять прочностные свойства лучше всего в онлайн режиме, воспользовавшись специальными программами «Калькулятор прочности».

С помощью программы не составить сложности без погрешностей вычислить несущую способность швов по длине и катету, подобрать диаметр арматуры согласно требуемой на разрыв нагрузки, установить площадь поперечного сечения и рассчитать другие значения, от которых зависит прочность и надежность сварных конструкций.

Читайте также:
Почти разводной ключ, оригинальное решение своими руками

Механические испытания на ударный изгиб

Динамическими называют испытания, при которых скорость деформирования значительно выше, чем при статических испытаниях.

Динамические испытания на ударный изгиб выявляют склонность металла к хрупкому разрушению. Метод основан на разрушении образца с надрезом (концентратором напряжений) одним ударом маятникового копра.

Стандарт предусматривает образцы с надрезами трех видов:

образец U – образный с радиусом R = 1 мм (метод KCU);

образец V – образный с радиусом R = 0.25 мм (метод KCV);

образец I – образный с усталостной трещиной (метод КСТ).

Под ударной вязкостью понимают работу удара, отнесенную к начальной площади поперечного сечения образца в месте концентратора.

После испытания по шкале маятникового копра определяют работу удара, которую затрачивают на разрушение образца. Площадь сечения образца определяют до разрушения.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ

Твердостью называется свойство металла оказывать сопротивление пластической деформации в поверхностном слое при вдавливании шарика, конуса или пирамиды. Измерение твердости отличается простотой и быстротой осуществления и выполняется без разрушения изделия. Широкое применение нашли три метода определения твердости:

— твердость по Бринеллю (единица твердости обозначается HB); — твердость по Роквеллу (единица твердости обозначается HR); — твердость по Виккерсу (единица твердости обозначается HV).

Определение твердости по Бринеллю заключается во вдавливании стального шарика диаметром D = 10 мм в образец (изделие) под действием нагрузки и в измерении диаметра отпечатка d после снятия нагрузки.

Твердость по Бринеллю обозначают цифрами и буквами НВ, например, 180 НВ. Чем меньше диаметр отпечатка, тем выше твердость. Чем выше твердость, тем больше прочность металла и меньше пластичность. Чем мягче металл, тем меньше устанавливают нагрузку на приборе. Так при определении твердости стали и чугуна нагрузку принимают 3000 Н, никеля, меди и алюминия – 1000 Н, свинца и олова – 250 Н.

Определение твердости по Роквеллу заключается во вдавливании наконечника с алмазным конусом (шкалы А и С) или стального шарика диаметром 1.6 мм (шкала В) в испытуемый образец (изделие) под действием последовательно прилагаемых предварительной (Ро )и основной (Р) нагрузок и в измерении глубины внедрения наконечника (h). Твердость по Роквеллу обозначается цифрами и буквами HR с указание шкалы. Например, 60 HRC (твердость 60 по шкале С).

Определение твердости по Виккерсу заключается во вдавливании алмазного наконечника, имеющего форму правильной четырехгранной пирамиды, в образец (изделие) под действием нагрузки и в измерении диагонали отпечатка d, оставшегося после снятия нагрузки. Метод используется для определения твердости деталей малой толщины и тонких поверхностных слоёв с высокой твердостью. Твердость по Виккерсу обозначается цифрами и буквами HV, например, 200 HV.

Испытания на статический изгиб

Технологические испытания на статический изгиб служит для определения способности металла воспринимать заданный по форме и размерам загиб. Аналогичные испытания проводят и на сварных соединениях.

Испытанию на загиб подвергают образцы из листового и фасонного (пруток, квадрат, уголок, швеллер и др.) металла. Для листового металла ширина образца (b) принимается равной двойной толщине(2•t), но не менее 10 мм. Радиус оправки указывается в технических условиях.

Различают три вида изгиба:

— загиб до определенного угла; — загиб вокруг оправки до параллельности сторон; — загиб вплотную до соприкосновения сторон (сплющивание).

Читайте также:
Обустраиваем ванную комнату

Отсутствие в образце трещин, надрывов, расслоений или излома является признаком того, что образец выдержал испытание.

Качество сварочного шва и определение катета

При сборке металлоконструкции соединение деталей сваркой рассматривается как одна из наиболее надежных технологий. Надежность и прочность шва зависит от распределения усилий по металлу, а это в свою очередь определяется геометрическими параметра зоны соединения. Главная особенность технологии состоит в том, что место стыковки заливается металлом, а в процессе его остывания сварочная ванна приобретает единую структуру. Целостность и соединения в дальнейшем зависит от способности этой структуры противостоять нагрузкам.

Особенности стыкового и углового соединения заготовок

Основные параметры, по которым оценивается и рассчитывается соединение, учитывают его геометрические особенности. Для них существуют понятные определения. Они в свою очередь зависят от типа соединения — стыкового, углового, торцевого или нахлеста. При этом имеет большое значение подготовка кромок и торцов деталей. Учитывается ряд особенностей заготовок и самого шва.

Стык листов толщиной от 4 мм должен выполняться с подготовкой кромок и торцов таким образом, чтобы образовался треугольный криволинейный зазор для полного проваривания на всю глубину.

Листы толщиной 2 мм варят только нахлестом, избегая сквозного прожога металла.

Полноценный провар соединения достигается только при прогревании металла на всю глубину стыка. Именно для этого прибегают к скосу кромок деталей. При сваривании уголков большой толщины скос выполняется как для листов.

При угловом и тавровом сваривании деталей формируется характерный наплыв, ширина и форма которого определяет прочность и долговечность стыковки.

ВАЖНО ЗНАТЬ: Советы по сварке нержавейки полуавтоматом в среде углекислого газа

При стыковании деталей со скосом кромок, как и при угловом соединении, шов в разрезе имеет треугольную форму. В первом случае учитывается соотношение ширины, глубины и высоты шва. Во втором наплыв образует наклонную поверхность — расстояние от ее края до другой детали и есть катет сварного шва, параметры которого определяются ГОСТ 5264-80.

Расчет на прочность сварного шва

Прочность сварных соединений – это возможность в определенных условиях выдерживать нагрузки, не разрушаясь от силовых воздействий. Нагрузки при этом учитываются не только рабочие, но и предельные.

Рабочие состоят из внешних нагрузок, возникающих в процессе эксплуатации от собственного веса и образующихся при сваривании напряжений. К предельным относят те, которые образуются при текучести в основном сечении и в при этом возникают максимально допустимые деформации и повреждения. Чтобы стыки были надежными и качественными, то перед процессом сваривания необходимо выполнить расчет на прочность сварного шва.

Фото: прочность сварного шва

От чего зависит прочность сварочного стыка

Чтобы правильно вычислить прочность сварного шва, необходимо знать какие факторы влияют на прочностные характеристики. Главное условие для создания прочных соединений – соблюдение сварочной технологии.

Но есть также ряд других факторов, от которых зависит насколько качественным будут стыки:

  • качество используемых материалов. Коэффициент прочности сварного шва напрямую зависит от того, насколько правильно подобран окружающий металл и какими характеристиками он обладает;
  • расходные материалы. Неверно подобранные присадки или электроды не способны сформировать надежное соединение;
  • сварочное оборудование должно отвечать требуемой мощности и технологии сварки;
  • надежность и качество провара зависит от режима сварки, в частности от силы тока и полярности;
  • качество заготовок. На кромочных стыках не должно быть никаких изъянов и вкраплений, поскольку это нарушает форму и прочность шва.

Каждый из этих параметров должен учитываться при планировании сварочных работ и от каждого из них зависит насколько точно будет произведен расчет на прочность сварных соединений.

Читайте также:
Секреты правильного ухода за полом из деревянной доски

Как рассчитать на прочность сварочные швы

В зависимости от того, как размещены при сваривании соединяющие элементы, выделяют разные типы швов: угловые, стыковые, тавровые, нахлесточные. На фото ниже можно посмотреть разные способы соединения между собой свариваемых деталей.

Фото: виды сварных швов

Для каждого вида соединений расчет сварных швов на прочность проводится индивидуально и с учетом разных параметров. Прочностные значения стыковых швов определяются по номинальному сечению проваренного участка, на котором отсутствуют наплывы. Для угловых соединений прочностные показатели определяет катет.

В любом случае прежде чем осуществлять расчет прочности сварного шва, необходимо вычислить площадь его поперечного сечения. Установить сечение можно при умножении длины и толщины сварочного соединения.

Определить допускаемое усилие в стыке при растяжении можно по формуле: Р = σp × S × I

При сжатии формула несколько другая: Р = σсж × S × I

Условные обозначения в формулах следующие:

  • S – толщина элементов, которые соединяются техникой сваривания;
  • I – длина сварочного соединения;
  • σp – допустимое напряжение при растяжении;
  • σсж – допустимое напряжение при сжатии.

Вычислить какой прочностью будет обладать нахлесточный шов можно по формуле: Р = τср × 0,7К × I, в которой:

  • Р – допустимо возможное усилие;
  • τср – показатель допускаемого напряжения металла, наплавленного при срезе;
  • К – длина катета, которая в формуле проставляется с коэффициентом 0,7;
  • I – протяжность соединительного стыка.

Вычисляя несущие возможности стыкового шва необходимо ориентироваться на напряжение, которое является допустимым в самом опасном сечении (s), а также на напряжение, зависящее от предела текучести (HSЭ). Выдерживание соотношений этих двух показателей является обязательным и только при полном их соответствии элемент металлоконструкции будет удовлетворять все выдвигаемые к прочностным характеристикам требования.

Основная задача при подготовке к свариванию металлоконструкций – не превысить максимально допускаемые напряжения рассчитывая прочность сварного шва на разрыв, таблица коэффициентов которого есть на специализированных сайтах в интернете в свободном доступе.

Онлайн расчет прочности стыков

Проведение предварительных расчетов прочности перед свариванием металлоизделий позволяет предотвратить неточности и браки, приводящие к разрушению конструкций. Чтобы безошибочно провести расчет сварных швов на прочность примеры готовых вычислений могут послужить в качестве инструкций правильности выполнения всех действий. А исчислять прочностные свойства лучше всего в онлайн режиме, воспользовавшись специальными программами «Калькулятор прочности».

С помощью программы не составить сложности без погрешностей вычислить несущую способность швов по длине и катету, подобрать диаметр арматуры согласно требуемой на разрыв нагрузки, установить площадь поперечного сечения и рассчитать другие значения, от которых зависит прочность и надежность сварных конструкций.

Интересное видео

Как рассчитать прочность сварного шва

Расчет сварного шва

Швы и соединения

В производстве металлоконструкций самым надежным методом соединения между собой отдельных деталей является сварка. Прочность сцепления при этом обеспечивается межмолекулярным взаимодействием, возникающим под влиянием высокой температуры. Чтобы стыки (дорожки, швы) готового изделия получились качественными, перед началом работы должны быть правильно выполнены расчеты сварного шва. Точные вычисления нужны для выбора основных и расходных материалов, для понимания того, насколько надежной и монолитной будет конструкция.

Прочность сварного шва

Какие параметры используются в расчете

В расчете на прочность сварных соединений необходим целый ряд показателей.

При этом учитывают следующие основные параметры:

  • Ry – сопротивление материала изделия с учетом предела текучести; это постоянная величина для каждого металла;
  • Ru – сопротивление материала в соответствии с временным сопротивлением; стандартный табличный показатель;
  • Rwy – сопротивление с учетом предела текучести;
  • N – предельно допустимая нагрузка, которую может выдержать сцепление;
  • t – минимальная толщина соединяемых деталей;
  • lw – максимальная длина сварного стыка, при вычислении ее уменьшают на 2t;
  • gс – коэффициент условий, которые преобладают на рабочем месте; стандартизированный параметр, присутствует в общепринятых таблицах, в частности, в методичках для сварщиков.
Читайте также:
Половая доска для спортзала

Процесс растяжения и сжатия металла вычисляют по формуле:

Screenshot_3.jpg

.

Если при изготовлении изделия свариваются детали из разных металлов, то в формулах используются Ry и Ru для материала с наименьшей прочностью. Аналогично поступают при включении параметров в расчете шва на срез.

Параметры

Кроме названных числовых показателей на надежность соединения влияют:

  • качество материала изделия;
  • правильно подобранные расходные материалы (присадки, электроды);
  • режим сварки, в т. ч. полярность и сила тока;
  • тщательность обработки заготовок – на кромке стыков не должно быть никаких деформаций и посторонних вкраплений;
  • соответствие сварного аппарата требуемой технологии сварки и мощности.

Такие характеристики обязательно берутся во внимание, от каждой из них зависит точность расчета качества сцепления.

Коэффициент прочности шва

Это показатель φ, являющийся отношением между собой прочностей сварной дорожки и основного материала. Его значение нормировано и определяется способом сварки и конструкцией стыка. Он принимается на основании Правил Госгортехнадзора и отражается в приложениях ГОСТов Р52857.1-2007, 14249-89 и 34233.1-2017.

Таблица 1. Коэффициенты прочности сварочных швов

Тип сварного соединения Значение φ
Контролируемый участок от общей протяженности шва:
100% 10-50 %
Стыковое одностороннее, выполненное ручной сваркой 0,9 0,65
Тавровое, с конструктивно предусмотренным зазором между деталями 0,8 0,65
Встык одностороннее, производимое с подкладкой из флюса или керамики, автоматической или полуавтоматической сваркой 0,9 0,8
Втавр или встык со сплошным двусторонним проваром, выполняемый автоматикой или полуавтоматикой 1,0 0,9
Стыковое с подвариванием корня шва или тавровый со сплошным проваром с 2 сторон, выполненные ручной сваркой 1,0 0,9
Одностороннее встык, во время сварки имеет со стороны корня шва металлическую подкладку, прилегающую к основному материалу по всей длине шва 0,9 0,8

Коэффициент прочности для дорожек, паянных мягкими и твердыми припоями с использованием аппаратов из цветных металлов, составляет 0,7 для композиционной пайки, 1 – для однородной.

Используемые формулы

Есть много формул, по которым производят расчеты для создания качественных сварных дорожек. В них используются показатели, определяемые не только типом шва, но и видом и толщиной основного материала, площадью и расположением стыкуемых деталей, предельными нагрузками, эксплуатационной температурой изделия и др. Уравнения для отдельных разновидностей сварных швов различаются.

Используемые формулы

Расчет прочности швов на выпуклых поверхностях

В производстве сосудов – труб различных емкостей – применяются стыковые сварные соединения. Сюда относятся швы на выпуклых днищах (меридиональные и хордовые) и на обечайках (продольные). Принятые стандарты и методы расчета на прочность таких изделий отражены в ГОСТ 34233.11-2017. Расчет сварного соединения выпуклой поверхности зависит от ряда показателей – марки и толщины стали, из которой изготавливается сосуд, внутреннего и внешнего давления на стенки, типа нагрузки и т. д.

Уравнение расчета допускаемого напряжения (измеряется в МПа) на примере цилиндрической обечайки для сосуда, работающего при однократных статических нагрузках и выполненного из низколегированной или углеродистой стали:

Screenshot_12.jpg

Данная формула применима только для сосудов из пластичных материалов в условиях использования металлов.

Читайте также:
Отопительный газовый котел Bosch: ошибки и инструкция по экслуатации и обслуживанию неисправных приборов

Зависимость от типа сварочного шва

Существует несколько вариантов сцепления металлических элементов в единую конструкцию. По расположению соединяемых деталей различают следующие виды сварных швов:

  1. Стыковой – наиболее рациональный, т. к. концентрация напряжения в шве при таком методе минимальна. Свариваются торцы деталей, в результате одна часть изделия продолжает другую.
  2. Угловой – соединяемые элементы располагаются перпендикулярно друг другу. Прочность здесь во многом зависит от верно рассчитанного предельного усилия.
  3. Тавровый – похож на угловой с той лишь разницей, что детали свариваются торцами. Такая дорожка прочная, экономичная и простая в выполнении.
  4. Нахлесточный – края сцепляемых деталей несколько находят друг на друга. Такой тип позволяет укрепить соединение и применяется там, где нужно сварить металл толщиной не более 5 мм.

Для каждого из названных типов расчет производится по индивидуальной формуле.

Прежде чем начинать вычисление прочности будущего сцепления, нужно рассчитать площадь его поперечного сечения. Для этого длину сварного соединения умножают на его толщину.

Соединение листов внахлест

Для расчета напряжения среза используют формулу:

Screenshot_2.jpg

,

Из выражения понятно, что полученное напряжение на срез должно получиться меньше максимально допустимого.

Значение нагрузки P таково:

Screenshot_4.jpg

.

При расчете учитывают минимальную площадь сечения сварной дорожки в поперечнике. Это связано с тем, что сварочные материалы по прочности могут превышать основной металл.

Угловые конструкции

Такие соединения рассчитываются на основании их поперечного сечения, причем наименьшего, т. е. в наиболее опасном месте дорожки. Показатель устойчивости простого углового шва на изгиб, когда он нагружен лишь моментом M, вычисляется так:

Screenshot_5.jpg

,

  • Wc – момент сопротивления опасного сечения дорожки (шва);
  • M – изгибающий момент.

Угловые конструкции

А напряжение простого углового соединения на срез запишется таким образом:

Screenshot_1.jpg

,

  • M – нагружающий момент на срез;
  • Fc = 0,7kl – площадь сечения дорожки в опасном месте, мм²;
  • P – допустимая нагрузка на дорожку.

При расчете угловых сварных швов на срез применяется общепринятое выражение:

Screenshot_6.jpg

,

  • N – максимальная нагрузка, давящая на линию сцепления;
  • с – коэффициент условий рабочей среды, значение указано в стандартизированных таблицах;
  • ßf, ßz – постоянные величины, не зависящие от марки металла, ßz = 1, ßf = 0,7;
  • Rwf – сопротивление срезу, табличная величина для разных материалов;
  • Rwz – сопротивление на линии стыка; стандартные, постоянные табличные величины;
  • kf – толщина дорожки, измеряется по линии сплавления;
  • Ywf – для стыка материала с сопротивлением 4200 кгс/см² составляет 0,85;
  • Ywz – 0,85 для всех марок стали;
  • lw – общая длина стыка, уменьшенная на 10 мм.

В определении длины сварочного сцепления на отрыв обязательно учитывают силу, направленную к центру тяжести. При этом площадь сечения выбирают в самом опасном месте дорожки, т. е. наименьшую.

Тавровые швы

Условие прочности сцепления втавр, выполненного встык и работающего на растяжение Р и момент M, выглядит так:

Screenshot_6.jpg

.

Формула для такого же, но не стыкового, а углового шва:

Screenshot_7.jpg

.

Тавровые швы

Если тавровое соединение будет нагружено изгибом и крутящим моментом, то применяется уравнение:

Screenshot_8.jpg

.

Крутящая и изгибающая сила соответственно определяются следующими формулами:

Screenshot_9.jpg

Screenshot_10.jpg

.

Сварка на стыке

Расчет шва встык, который будет работать на сжатие либо на растяжение, выполняется по уравнению:

Screenshot_2.jpg

,

  • l – длина сварочной дорожки, мм;
  • P – нагрузка, действующая на стык, Н;
  • s – толщина соединяемых деталей, мм;
  • [σ]’ р1сж1 – допускаемое для сцепления напряжение на растяжение либо сжатие, Па.

Допустимая действующая нагрузка P составит:

Screenshot_3.jpg

.

Стыковое сцепление, работающее на изгиб, рассчитывается по формуле:

Читайте также:
Садовый бур из диска

Screenshot_4.jpg

,

  • М – это изгибающий момент, Н/мм;
  • Wc – момент сопротивления расчетного сечения.

Если напряжение шва возникает и от изгиба М, и от сжатия либо растяжения Р, то оно определяется уравнением:

Screenshot_5.jpg

.

Расчет сварного шва на прочность

В сварных соединениях некоторые швы являются рабочими, а некоторые — связующими (рис. 60). Рабочими называются швы, воспринимающие нагрузку от внешних усилий. При разрушении рабочего шва может разрушиться и сварное соединение. Связующими называются швы, служащие для соединения нескольких элементов конструкции (например, полос), несущих основную нагрузку. Наплавленный металл связующих швов деформируется вместе с основным металлом элементов, связанных данным швом. Если связующий шов разрушится, то соединение может работать, так как нагрузка воспринимается элементами основного металла. На прочность рассчитываются только рабочие швы.

Прочность сварного соединения должна быть не ниже прочности основного металла.

Прочность сварного соединения характеризуется величиной фактических напряжений, возникающих в нем от действующих усилий. Чтобы соединение было прочным, фактические напряжения должны быть ниже тех, при которых металл шва разрушается. Принимаемые при расчете напряжения называются расчетными и обозначаются ст.

Расчетное напряжение, т. е. напряжение от расчетных усилий, не должно превышать расчетного сопротивления металла R. т. е. σ ≤ R

Величина расчетных сопротивлений (напряжений) регламентируется нормами, установленными для тех или иных конструкций, в зависимости от их назначения, применяемого металла, условий работы, методов контроля и пр.

Расчетное напряжение всегда ниже предела текучести данного металла. Отношение предела текучести σт к расчетному напряжению σ называется запасом прочности.

nз = σт/σ

где nз — запас прочности.

Для стальных изделий запас прочности по пределу текучести обычно равен nз=1,2-1,6. Для металлов, не обладающих ясно выраженным пределом текучести, запас прочности определяют по отношению к временному сопротивлению разрыву oв. В этом случае запас прочности составляет обычно nз = 3 – 4.

Расчетные сопротивления металла стыковых швов Rс св , принимаемые при расчетах сварных швов стальных строительных конструкций, регламентируются «Строительными нормами и правилами». По этим нормам для ручной, полуавтоматической и автоматической сварки стыковых швов на стали Ст3 и Ст4 величина Rс св при растяжении равна:

– для обычных методов контроля швов (наружным осмотром и обмером) Rс св = 1800 кгс/см 2 ;

– для повышенных способов контроля (рентгено- и гаммаграфия, ультразвуковая и магнитографическая дефектоскопия и др.) Rс св = 2100 кгс/см 2 ,

– при срезе Rс св = 1300 кгс/см 2 .

При сварке указанными способами угловых швов Ст3 и Ст4 для всех видов контроля принимают Rс св =1500 кгс/см 2 (при сжатии, растяжении и срезе).

Стыковые швы на прочность рассчитывают по формуле N = Rс св *S*l

где N – предельно допускаемое действующее расчетное усилие, кгс;

Rс св – расчетное сопротивление растяжению для металла шва, кгс/см 2 ;

S – толщина металла в расчетном сечении, см; l – длина шва, см.

Например, если Rс св = 1800 кгс/см 2 ; S = 1 см, l = 20 см, то такой шов может безопасно работать при наибольшем усилии, равном N = 1800*1*20 = 36000 кгс.

Прочность лобовых угловых швов рассчитывают по формуле N = 0,7*K*Rу св

где К – высота катета шва, см;

Rу св – расчетное сопротивление срезыванию в угловом шве, кгс/см 2 ;

I – длина шва, см.

Прочность фланковых угловых швов рассчитывается по формуле N = 2*0,7*К*Rу св

Пример: Требуется расчитать угловой фланковый шов. Действующее усилие N=6000кгс; катет шва К=0,8 см; принимая во внимание расчетное сопротивление на срезывание Rу св =1500 кгс/см 2 , определяем по формуле необходимую длину шва:

Читайте также:
Подводный душ – приятная и полезная процедура!

На рисунке справа показаны обозначения при расчете швов на прочность.

Также следует отметить: по длине фланкового шва напряжения распределяются неравномерно и максимальное значение их приходится на конец шва состороны приложения усилия. Поэтому при расчете на прочность фланкового шва за расчетную принимают длину шва, равную не более 50 катетам.

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Расчет на прочность сварных швов

21555

Во время соединения отдельных деталей металлоконструкций часто используются сварные соединения, так как это самый простой, доступный и дешевый метод, который может предоставить качество достаточно высокого уровня. Но все равно, параметры каждого шва будут отличаться, в зависимости от металла, его толщины и условий проведения процедуры. Расчет на прочность сварных швов проводится для того, чтобы определить, какими характеристиками обладает или будет обладать соединение, выполненное с определенными параметрами.

Сварочный шов

Предварительными расчетами занимаются в то время, когда составляют проект. Это необходимо для рационального подбора материалов, которые бы смогли выдержать возлагаемые нагрузки и имели запас прочности. Перерасход металла на производстве не следует допускать, так что расчет сварного шва на прочность, позволяет определить количество и качество используемых материалов.

Чтобы узнать прочность сварного шва, требуется точно измерить все его параметры. Естественно, что небольшие отклонения вполне допустимы, так как невозможно сделать предельную точность даже при автоматической сварке, не говоря уже о том, когда все делается вручную. Они, как правило, не оказывают сильного влияния, но сварщику необходимо придерживаться заданных параметров.

Методика расчета соединений

Расчет сварного шва на срез и на прочность проводятся индивидуально для каждого типа соединения.

Стыковые швы. При работе со стыковыми швами, одним из главных параметров для вычислений является номинальное сечение. При этом, наплывы металла, которые образуются во время сварки, не учитываются. Вычисление основывается на известных по данным сопротивления материалов зависимостей, возникающих в сплошных балках. Когда начинается одновременное воздействие касательных и нормальных напряжений, которые концентрируются в наиболее нагруженной точке на сечении, то эквивалентное напряжение можно будет рассчитать по четвертой теории прочности по следующей формуле:

При этом, условие прочности выглядит как: σЭ ≤ [σ’]P

Данные для этого значения определяются по таблице, приведенной ниже:

Угловые швы. Данный тип соединения чаще всего выполняется с нормальным поперечным сечением. Соотношение сторон при этом составляет 1:1, но бывают и исключения. Сторона сечения носит название катет сварного шва. Она обозначается на схемах как «К». Когда шов разрушается, то это происходит в наименьшем месте сечения, которое проходит через биссектрису прямого угла. Размер шва в данном сечении составляет βк. Вторым важным размером является длина шва. Это поможет определить, какую нагрузку выдерживает сварной шов. В случае, если сварка шла автоматически, полуавтоматически или же осуществлялась вручную, то значение β будет составлять 0,7. В таком случае шов будет прямоугольным равнобедренным треугольником.

Если сварка осуществлялась в полуавтоматическом режиме, но было несколько проходов, к примеру, 2 или 3, то β уже будет равняться 0,8. При условии многослойной сварки в автоматическом режиме значение возрастает до 0,9. Расчет на прочность сварных соединений углового типа проводятся условно по касательным напряжениям. Здесь требуется вычислить суммарное касательное напряжение. Для этого нужно определить самую нагруженную точку во взятом сечении. Далее следует сложить все имеющиеся в нем напряжения, чтобы определить общую сумму

Читайте также:
Распашные угловые шкафы : с двумя дверями, однодверный и Г-образный модульный шкаф для одежды

После этого нужно определить, какое распределение имеют выбранные напряжения. Те, которые вызываются при помощи центральных сил, относятся к равномерно распределенным по сечению. Если напряжение вызвано центрально-поперечной силой и оказывает воздействие на швы малой длины, то оно не относится к данной категории и такие силы не учитываются при расчете. Те напряжения которые вызываются моментом, считают пропорциональными те расстояниям, которые отделяют их от центра масс. Также может быть принято расстояние до нейтральной линии, которая проходит через этот центр. Это актуально при воздействии момента в плоскости, которая находится перпендикулярно по отношению к стыку. В данном случае, условие прочности будет выглядеть следующим образом вид τ ≤ [τ]ср, где [τ’]ср можно найти в таблице приведенной выше.

Допускаемые напряжения. Совокупность сил, что вызывает напряжение в сварных соединениях, имеют свой предел, который является безопасным для работы. Допускаемые напряжения на чертежах отмечаются при помощи штриха. Принятые нормы допускаются, так как не оказывают какого-либо серьезного негативного воздействия.

Порядок выполнения расчета сварных соединений

Чтобы определить. Сколько выдерживает сварной шов, необходимо не только знать исходные данные, но и провести расчеты в заданном порядке. Чтобы все прошло правильно, необходимо придерживаться следующего плана:

  1. Определяются основные параметры, которыми обладает сварное соединение. Это его размеры, форма и пространственное положение.
  2. Затем опасное сечение проворачивается на плоскость, которая соприкасается со свариваемой деталью, она еще называется плоскостью стыка деталей. Поворот необходим, если опасное сечение шва не сходится с плоскостью стыка на исследуемой детали. То сечение, которое образуется вследствие поворота, носит название расчетное.
  3. После этого приступают к поиску положения центра масс на расчетном сечении.
  4. Внешняя приложенная нагрузка переносится в центр масс, которые имеются на расчетном сечении.
  5. Далее необходимо определить напряжение, которое возникает в расчетном сечении при воздействии всех принятых силовых факторов. Сюда входит поперечная и нормальная сила, а также крутящий и изгибающий момент.
  6. После этого определяется наиболее нагруженная точка в сечении. В ней складываются все полученные нагрузки, воздействующие на поверхность, и определяется суммарная нагрузка, которая и будет максимумом, с которым придется столкнуться шву.
  7. Происходит расчет допускаемого напряжения, воздействующего на сварной шов.
  8. На завершающем этапе происходит сравнение допустимого напряжения и суммарного, максимального на сечении. Благодаря этому, можно найти те размеры, которые будут наиболее подходящими для работы данной металлоконструкции. Чтобы подтвердить данные, делается дополнительный проверочный расчет.

Не стоит забывать, что все эти данные остаются актуальными только если соблюдаются все правила выполнения сварных соединений.

Методика расчета сварных соединений

Расчет прочности швов соединений, нагружаемых осевыми силами

L — общая длина рассчитываемого шва;

δ— толщина соединяемых деталей;

k — катет углового шва;

d, i — диаметр пробок и их количество в пробочном соединении;

а — ширина шва при роликовой сварке.

Сварной шов при соединении встык (рис. 1) работает на растяжение и сжатие, причем все виды подготовок кромок принимаются эквивалентными.

Чертеж сварного шова при соединении встык

рис.1 Стыковые швы; а — прямой; б — косой

Формула условия прочности сварного шва

Условие прочности шва (формула 1)

Чертеж соединения внахлестку валиковыми швами

рис. 2 Соединения внахлестку валиковыми швами: а — лобовыми; б — фланговыми; г — сечение углового (валикового) шва

Угловые швы (рис. 2) рассчитывают на срез по сечению, проходящему через биссектрису прямого угла; расчетная высота шва h = k cos 45° ~ 0,7k

формула 2

Схема несимметричного расположения швов относительно линии действия силы

При несимметричном расположении швов относительно линии действия силы Р (рис. 3) усилия, возникающие в них, находятся из уравнений статики:

Читайте также:
Понятие электрического тока и в чём он измеряется

уравнения статики

Сварные швы при соединении втавр рассчитываются различно в зависимости от типа швов (рис. 4)

Чертежи сварных швов таврового соединения

формула 4

по рис. 4, типы б, в

формула 5

Чертежи пробочных соединений сварных швов

Пробочные соединения (рис. 5, а) рассчитывают на срез по формуле

формула 6

При соединении деталей точечной сваркой сварной шов работает на срез, тогда

формула 7

или на отрыв, тогда

формула 8

Шов, получаемый роликовой сваркой, рассчитывается на срез:

формула 9

Расчет прочности швов, нагруженных перпендикулярно стыку свариваемых деталей

рис. 6 Соединение нагружено силой и моментом (швы стыковые)

Расчет прочности шва соединения, нагруженного силами и моментом (рис. 6), ведется по нормальным напряжениям (влиянием поперечной силы, как и при расчете балок на изгиб, пренебрегают):

формула 10

Здесь We = δh 2 /6 — момент сопротивления сварного шва; Fe = δh — площадь сечения шва

рис. 7 Соединение нагружено силой и моментом (швы угловые)

В случае выполнения соединения угловыми швами (рис. 7) расчет ведут по условной методике, геометрически суммируя
напряжения от изгиба и растяжения с напряжениями, соответствующими поперечной силе:

формула 12

Величина τQ учитывается лишь в случаях, когда поперечная сила сравнительно велика, а плечо внешнего момента небольшое; в формуле учтены

формула 13

формула 14

Wc = 2×0,7kh 2 /6 — момент сопротивления биссекторного сечения швов; Fc = 2×0,7kh — площадь сечения швов

Расчет прочности швов, нагруженных в плоскости стыка свариваемых деталей

Схема шва нагруженного в плоскости стыка свариваемых деталей

рис. 8 Швы нагружены в плоскости стыка свариваемых деталей

Угловые швы соединения рассчитывают обычно по одной из двух условных методик: по способу полярного момента инерции или по способу осевого момента инерции. В первом случае касательное напряжение от действия момента

формула 16

где М — расчетный момент; rmax — расстояние от центра тяжести швов до наиболее удаленной точки шва; Ipc — полярный момент инерции швов

Касательное напряжение тм в любой точке считается направленным перпендикулярно к радиус-вектору, соединяющему эту точку с центром тяжести периметра швов. Моменты инерции вычисляются для биссекторного сечения швов.
По второму способу

формула 18

где ymax — расстояние от оси элемента до наиболее удаленной точки шва;
Напряжение от растяжения (или сжатия)

формула 19

где, Fe = 0,7 kL — общая площадь швов

При учете влияния поперечной силы соответствующее напряжение вычисляется лишь для вертикального шва, т. е.

формула 20

Суммарные касательные напряжения в опасной точке шва находятся геометрическим сложением.
Расчет швов точечного соединения (рис. 9) проводится по одному из двух вышеперечисленных способов.

Чертеж стального шва точечного соединения

Усилие в наиболее нагруженной точке от внешнего момента
или

геометрически суммируется с усилием, равным

обусловленным действие силы Р, т.е.

Условием прочности служит выражение

При расчете швов на переменную нагрузку вводят коэффициент у снижения допускаемого напряжения:
а) для стыковых швов при нагрузке, переменной по величине, γ = 1; при нагрузке, меняющейся по величине и по направлению

формула 26

б) для угловых швов при нагрузке, как переменной по величине, так и переменной по величине и направлению

формула 27

Pmin и Pmax — наименьшее и наибольшее по абсолютной величине усилия, которые следует подставлять в формулы со своими знаками

Таблица допускаемых напряжений для основного металла на растяжение

Допускаемые напряжения при расчете сварных швов

* [σ]р — допускаемое напряжение для основного металла на растяжение

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: