Применение моста Уитстона для измерения неэлектрических величин

Измерительные мосты и компенсаторы

Измерительный мост – это обычно четырехплечая электрическая цепь, составленная из резисторов, конденсаторов и катушек индуктивности, предназначенная для определения отношения параметров этих компонентов. К одной паре противоположных полюсов цепи подключается источник питания, а к другой – нуль-детектор. Измерительные мосты применяются только в тех случаях, когда требуется повышенная точность измерения. (Для измерений со средней точностью лучше пользоваться цифровыми приборами, поскольку они проще в обращении.) Наилучшие трансформаторные измерительные мосты переменного тока характеризуются погрешностью (измерения отношения) порядка 0,0000001%.

Наиболее точные измерения сопротивления постоянному току выполняются с помощью мостов постоянного тока. Мосты делятся на две группы: одинарные и двойные.

Одинарный мост, называемый мостом Уитстона, применяют для измерения сопротивлений от 1 Ом до 100 Мом.

Двойной мост, называемый мостом Томпсона, используют для измерения малых величин сопротивлений – менее 1 Ом.

Одинарный мост состоит из четырех плеч: три известных сопротивления в плечах моста вместе с измеряемым сопротивлением образуют замкнутый четырехполюсник. В измерительную диагональ моста включен указатель равновесия, в качестве которого используют магнитоэлектрический гальванометр. В другую диагональ моста включается источник постоянного тока.

Рис. 7.1 Схемы одинарных мо­стов постоянного и переменного тока

Подбором сопротивлений добиваются отсутствия тока через гальванометр. В состоянии равновесия моста выполняется условие:

Отношение двух сопротивлений в плече моста является фиксированным множителем (…) для регулируемого сопротивления в плече моста содержащем неизвестное сопротивление.

Погрешность измерения зависит от измеряемого диапазона, по мере увеличения измеряемого сопротивления уменьшается чувствительность прибора, возрастает влияние сопротивления изоляции. Нижний предел измерений ограничен влиянием сопротивления соединительных проводов. Эти погрешности исключаются в двойном мосте. Мост называется двойным, так как содержит два комплекта плеч отношения. При этом реализуется дифференциальный принцип измерения.

Для создания мостовых схем на переменном токе используют трансформаторные и емкостные измерительные схемы. Используют для измерения активного сопротивления, индуктивности и емкости.

Равновесие такого моста достигается при выполнении условия:

Из данного условия следует, что для уравновешивания моста с комплексными сопротивлениями необходима регулировка активной и реактивной составляющих. Равенство фаз указывает, какими по характеру должны быть сопротивления плеч моста для обеспечения равновесия мостовой схемы. Правильный выбор регулируемых элементов моста и питание напряжением повышенной частоты обеспечивает быстрое уравновешивание моста и его хорошую сходимость.

Сходимость моста – это возможность достижения состояния равновесия определенным числом переходов от регулировки одного параметра к регулировке другого.

Погрешность мостов переменного тока складывается из следующих составляющих: погрешности исполнения элементов схемы, погрешности их подгонки, от неполного учета активной и реактивной составляющих сопротивлений плеч моста, погрешности отсчетного устройства. С повышением частоты погрешности возрастают.

К резистору трудно подсоединить провода, не привнеся при этом сопротивления контактов порядка 0,0001 Ом и более. В случае сопротивления 1 Ом такой токоподвод вносит ошибку порядка всего лишь 0,01%, но для сопротивления 0,001 Ом эта ошибка будет составлять уже 10%. В таких случаях используют двойной измерительный мост (мост Томсона), предназначенный для измерения сопротивления резисторов малого номинала. Сопротивление таких четырехполюсных резисторов определяют как отношение напряжения на их потенциальных зажимах к току через их токовые зажимы. При такой методике сопротивление присоединительных проводов не вносит ошибки в результат измерения искомого сопротивления. Два дополнительных плеча исключают влияние соединительного провода между зажимами.

Рис. Двойной измерительный мост (мост Томсона – более точный вариант моста Уитстона, пригодный для измерения сопротивлений в области микроом).

Наиболее распространенные измерительные мосты переменного тока рассчитаны на измерения либо на сетевой частоте 50–60 Гц, либо на звуковых частотах (обычно вблизи 1000 Гц); специализированные же измерительные мосты работают на частотах до 100 МГц.

Как правило, в измерительных мостах переменного тока вместо двух плеч, точно задающих отношение напряжений, используется трансформатор. К исключениям из этого правила относится измерительный мост Максвелла – Вина. Такой измерительный мост позволяет сравнивать эталоны индуктивности (L) с эталонами емкости на не известной точно рабочей частоте. Эталоны емкости применяются в измерениях высокой точности, поскольку они конструктивно проще прецизионных эталонов индуктивности, более компактны, их легче экранировать, и они практически не создают внешних электромагнитных полей. Мост уравновешивается даже в случае «нечистого» источника питания (т.е. источника сигнала, содержащего гармоники основной частоты).

Читайте также:
Правильное оформление, которое поможет быстро убрать ванную комнату +Советы и лайфхаки

Одно из преимуществ измерительных мостов переменного тока – простота задания точного отношения напряжений посредством трансформатора. В отличие от делителей напряжения, построенных из резисторов, конденсаторов или катушек индуктивности, трансформаторы в течение длительного времени сохраняют постоянным установленное отношение напряжений и редко требуют повторной калибровки. На рис. 4 представлена схема трансформаторного измерительного моста для сравнения двух однотипных полных сопротивлений.

Рис. Трансформаторный измерительный мост.

К недостаткам трансформаторного измерительного моста можно отнести то, что отношение, задаваемое трансформатором, в какой-то степени зависит от частоты сигнала. Это приводит к необходимости проектировать трансформаторные измерительные мосты лишь для ограниченных частотных диапазонов, в которых гарантируется паспортная точность.

Измерительные мосты необходимо тщательно заземлять и экранировать, чтобы паразитные емкости между разными частями схемы моста не вносили ошибку уравновешивания.

В измерительных мостах переменного тока чаще всего применяются нуль-детекторы двух типов. Нуль-детектор одного из них представляет собой резонансный усилитель с аналоговым выходным прибором, показывающим уровень сигнала. Нуль-детектор другого типа – это фазочувствительный детектор, который разделяет сигнал разбаланса на активную и реактивную составляющие. Такие устройства пригодны в тех случаях, когда требуется точно уравновешивать только одну из неизвестных составляющих (скажем, индуктивность L, но не сопротивление R катушки индуктивности).

Измерительный мост Уитстона и его использование

Одной из популярнейших мостовых схем, по сей день применяемых в контрольно-измерительных приборах и в электротехнических лабораториях, является измерительный мост Уитстона, названный в честь английского изобретателя Чарльза Уитстона, предложившего данную схему для измерения сопротивлений в далеком 1843 году.

Измерительный мост Уитстона является по сути электрическим аналогом аптекарских рычажных весов, так как здесь используется подобный компенсационный метод измерения.

Принцип действия измерительного моста основан на уравнивании потенциалов средних выводов двух включенных параллельно ветвей резисторов, в каждой ветви по два резистора. В качестве части одной из ветвей включается резистор, величину которого требуется узнать, а в другую — резистор перестраиваемого сопротивления (реостат или потенциометр).

Плавно изменяя величину сопротивления перестраиваемого резистора, добиваются нулевого показания на шкале гальванометра, включенного в диагональ между средними точками двух упомянутых ветвей. В условиях, когда гальванометр покажет ноль, потенциалы средних точек будет равны, и значит можно легко вычислить искомое сопротивление.

Понятно, что кроме резисторов и гальванометра, в схеме обязательно должен присутствовать источник питания моста, на приведенном рисунке он изображен в виде гальванического элемента Е. Ток течет от плюса батарейки к минусу, при этом делится между двумя ветвями обратно пропорционально их сопротивлениям.

Если верхние и нижние резисторы в плечах моста попарно одинаковы, то есть когда плечи полностью идентичны, нет причин для возникновения тока через диагональ, поскольку разность потенциалов между точками подключения гальванометра равна нулю. В этом случае говорят что мостик уравновешен или сбалансирован.

Если же верхние резисторы одинаковы, а нижние не одинаковы, то ток устремится через диагональ, от плеча с большим нижним сопротивлением к плечу с меньшим нижним сопротивлением, и стрелка гальванометра отклонится в соответствующую сторону.

Сопротивления моста

Определение искомого сопротивления

Итак, если потенциалы точек, к которым подключен гальванометр, равны, то соотношения номиналов верхних и нижних резисторов в плечах будут равны между собой. Таким образом, приравняв эти соотношения, получим уравнение с одним неизвестным. Сопротивления R1, R2 и R3 должны быть изначально измерены с высокой точностью, тогда и точность нахождения резистора Rх(R4) будет высокой.

Читайте также:
Несколько советов о том, как сделать вольер для собак своими руками: как сделать самому

Схему моста Уитстона часто используют для измерения температуры, когда в одну из ветвей моста включают термометр сопротивления в качестве неизвестного резистора. В любом случае, чем больше разность сопротивлений в ветвях, тем больший ток будет течь через диагональ, а при изменении сопротивлений станет изменяться и ток диагонали.

Именно это свойство моста Уитстона так ценится теми, кто решает задачи контрольно-измерительного характера и разрабатывает схемы управления и автоматизации. Малейшее изменение сопротивления в одной из ветвей приводит к изменению тока через мостик, и это изменение фиксируется. Вместо гальванометра в диагональ моста можно включить амперметр или вольтметр, в зависимости от конкретной схемы и цели исследования.

Измерительный мост Уитстона

Вообще, с помощью моста Уитстона можно измерять самые разные величины: упругую деформацию, освещенность, влажность, теплоемкость и т. д., достаточно лишь вместо измеряемого резистора включить в схему соответствующий датчик, чувствительный элемент которого будет способен изменять свое сопротивление в соответствии с изменением измеряемой величины, пусть даже не электрической. Как правило, мост Уитстона подключается в таких случаях через АЦП, а дальнейшая обработка сигнала, отображение информации на дисплее, действия с опорой на получаемые данные — все это остается делом техники.

Измерительные мосты постоянного и переменного тока. Принципы измерений: мост Уитстона

Как пример, объясняющий электросхему моста, возьмём терморезистор или термометр. В таких системах механизм ставят в одной ветви схемы. Можно провести аналогию с аптечными весами. Разница только в том, что мост — электрическое устройство.

Рычажные весы и приборы с мостовой схемой действуют компенсационным способом. Величина тока в по Уинстону есть разница между сопротивлениями — чем она выше, тем обширнее протекает электрический ток. При изменении разности меняется и количество электрических зарядов.

Это свойство применяют в различных системах и приборах контроля. Точность замеров достигается за счет изменения сопротивления. Во время измерения электричества, проходящего через измерительный мост постоянного тока, обнаруживаются любые изменения физической величины сопротивления.

Принцип работы моста Уитстона

Мостовая схема Ч. Уинстона состоит из 2-х плеч. В каждом 2 резистора. Соединяет 2 параллельные ветви еще одна. Ее название – мостик. Ток проходит от клеммы с минусом к верхнему пику мостовой схемы.

Разделившись по 2 параллельным ветвям, ток идёт к положительной клемме. Величина сопротивления в каждой ветви непосредственно влияет на количество тока. Равное сопротивление на обеих ветвях говорит о том, что в них течет аналогичное количество тока. В таких условиях мостовой элемент уравновешен.

Если в ветвях неравное сопротивление, ток в электросхеме начинает движение от ветви с высоким уровнем сопротивления к ветви с наименьшим. Так продолжается, пока 2 верхних элемента цепей остаются равны по своей величине. Аналогичное положение резисторы имеют в схемах, которые используют в системах контроля и измерения.

Для измерения электрического сопротивления имеется два варианта использования моста Уитстона:

  • Определение абсолютного значения сопротивления путем сравнения с известным сопротивлением.
  • Определение относительных изменений сопротивления.

Последний вариант используется в отношении тензометрических методов измерения. Он позволяет с большой точностью определить относительные изменения сопротивления тензодатчика в распространённом диапазоне от 10 -4 до 10 -2 Ом / Ом.

На изображении ниже показаны две разные иллюстрации моста Уитстона: на рисунке а) обычное изображение ромба, в котором используется мост Уитстона; на рисунке b) располагается изображение все той же электрической схемы, но более понятное для новичка.

Четыре ветви мостовой схемы образованы сопротивлениями от R 1 до R 4 . Угловые точки 2 и 3 обозначают соединения для напряжения возбуждения моста V s . Выходное напряжение моста V 0 , то есть сигнал измерения, доступно в угловых точках 1 и 4.

схема моста уитстона

Общепринятого правила обозначения компонентов моста и соединений не существует. В популярной литературе есть всевозможные обозначения, и это отражено в уравнениях моста. Поэтому важно, чтобы обозначения и индексы, используемые в уравнениях, учитывались вместе с их положением в мостовых схемах, это поможет избежать путаницы.

Если напряжение питания V s приложено к точкам питания моста 2 и 3, то напряжение питания делится на две половины моста R 1 , R 2 и R 4 , R 3 как отношение соответствующих сопротивлений моста. , т. е. каждая половина моста образует делитель напряжения.

Читайте также:
Плоский сифон для раковины: принцип работы конструкции, материал изготовления и критерии выбора

Мост может быть разбалансирован из-за разницы напряжений и электрических сопротивлений на R 1 , R 2 и R 3 , R 4 . Это можно рассчитать следующим образом:

если мост уравновешен и

где выходное напряжение моста V 0 равно нулю.

При заданной деформации сопротивление тензодатчика изменяется на величину ΔR. Это дает нам следующее уравнение:

Для измерения деформации сопротивления R 1 и R 2 в мосте Уитстона должны быть одинаковыми. То же самое относится к R 3 и R 4 .

С помощью нескольких упрощений можно вывести следующее уравнение:

На последнем этапе расчета ΔR / R необходимо заменить следующим:

Здесь k — коэффициент k тензодатчика, ε — деформация. Получаем следующее:

Уравнения предполагают, что все сопротивления в мосту изменяются. Обозначения, такие как: четверть моста, полумост, двойная четверть или диагональный мост и полный мост, являются обычными.

Хотя для обозначения таких схем используются вышеупомянутые определения типа: «полумост» или «четверть моста», на самом деле они не совсем корректны. Фактически, цепь, используемая для измерения, всегда является полной и полностью или частично формируется тензометрическими датчиками. Затем они дополняются постоянными резисторами, которые встроены в измерительные приборы.

Весовые терминалы обычно соответствуют очень строгим требованиям к точности. Поэтому, в отличие от экспериментальных измерительных приборов, весовые преобразователи всегда должны иметь полную мостовую схему с активными тензодатчиками на всех четырех плечах.

В случае, если необходимо устранить различные помехи и факторы препятствующие измерению, полномостовые или полумостовые схемы используются для анализа нагрузки. Важным условием является четкое различение напряжений и сил, таких как сжатие или растяжение, а также изгибающие, сдвиговые или скручивающие силы.

В таблице ниже показана зависимость положения тензометрических датчиков, типа используемой мостовой схемы и результирующего коэффициента моста B для нормальных сил, изгибающих моментов, крутящего момента и температуры. В небольших таблицах, приведенных для каждого примера, указан коэффициент моста B для каждого типа влияющей величины. Эти уравнения используются для вычисления эффективного напряжения от выходного сигнала моста V O / V S .

Конфигурация моста Вычисление Измерение Описание Преимущества и недостатки
1 Измерение деформации на стержне растяжения / сжатия
Измерение деформации изгибаемой балки
Простой четвертьмост
Простая четвертьмостовая схема с одним активным тензодатчиком
+ Простая установка
— Нормальная деформация и деформация изгиба накладываются друг на друга

— Температурные эффекты не компенсируются автоматически

— Нормальную деформацию и деформацию изгиба нельзя разделить (наложение изгиба)

+ Температурные эффекты хорошо компенсируются

+ Высокий выходной сигнал и отличное подавление синфазных помех (CMR)

+ Температурные эффекты хорошо компенсируются

+ Температурные эффекты хорошо компенсируются

+ Высокий выходной сигнал и отличное подавление синфазных помех (CMR)

В примерах 13, 14 и 15 для измерения крутящего момента предполагается цилиндрический вал. По причинам, связанным с симметрией, допускается изгиб в направлении X и Y. Такие же условия действуют и для стержней с квадратным или прямоугольным поперечным сечением.

Пояснения к символам:

Т Температура
F n Нормальная сила
М б Изгибающий момент
M bx , M — пользователем Изгибающий момент для направлений X и Y
М д Крутящий момент
ε s Видимое напряжение
ε n Нормальное напряжение
ε б Деформация изгиба
ε d Деформация скручивания
ε Эффективная деформация в точке измерения
ν Коэффициент Пуассона
Активный тензодатчик
Тензодатчик для температурной компенсации
Резисторный или пассивный тензодатчик

Разновидности

  1. Небольшие сопротивления измеряются посредством прибора Кери Фотера. Можно узнать разницу между противодействиями больших значений.
  2. Еще один тип – делитель Кельвина-Варлея. Применяется в приборах лабораторного оборудования. Максимальная измеряющая способность, зафиксированная этим делителем напряжения, достигает 1,0*10-7.
  3. Мост Кельвина, который в некоторых странах называют именем Томсона, предназначен для замера неизвестных сопротивлений небольших величин (меньше 1 Ом). По принципу работы похож на одинарный мост Уинстона. Разница лишь в наличии дополнительного сопротивления, снижающего погрешности в измерении, которые появляются в результате падения напряжения в одном из плеч.
  4. Еще один тип – мост Максвелла. Измеряет низкодобротную индуктивность неизвестной величины.

Модификации

Используя мост Уитстона, можно с большой точностью измерять сопротивление.

Различные модификации моста Уитстона позволяют измерять другие физические величины:

  • ёмкость;
  • индуктивность;
  • импеданс;
  • концентрацию газов;
  • и другое.

Прибор explosimeter (англ.) позволяет определить, превышена ли допустимая концентрация горючих газов в воздухе.

Мост Кельвина (англ. Kelvin bridge), также известный как мост Томсона (англ. Thomson bridge), позволяет измерять малые сопротивления, изобретён Томсоном.

Вид спереди прибора, построенного на основе моста Кельвина

Прибор Максвелла позволяет измерять силу переменного тока, изобретён Максвеллом в 1865 году, усовершенствован Блюмлейном около 1926 года.

Мост Максвелла (англ. Maxwell bridge) позволяет измерять индуктивность.

Мост Фостера (англ. Carey Foster bridge) позволяет измерять малые сопротивления, описан Фостером (англ. Carey Foster) в документе, опубликованном в 1872 году.

Делитель напряжения Кельвина-Варли (англ. Kelvin–Varley divider) построен на основе моста Уитстона.

Схемы измерительных мостов

Измерительные мосты переменного тока делят на 2 группы: двойные и одинарные. Одинарные имеют 4 плеча. В них 3 ветви создают цепь с 4 точками подключения.

В диагонали моста есть электромагнитный гальванометр, показывающий равновесие. В другой диагонали моста действует источник постоянного питания. Измерения могут происходить с погрешностями, которые зависят от их диапазона. По мере роста сопротивления чувствительность прибора уменьшается.

Двойной мост называют шестиплечим. Его плечи – измеряемое сопротивление (Rx), резистор (Ro) и 2 пары дополнительных резисторов (Rl, R2, R3, R4).

Классификация

В промышленности широко применяются уравновешенные и неуравновешенные измерительные мосты.

Работа уравновешенных

мостов (наиболее точных) основана на «нулевом методе».

С помощью неуравновешенных

мостов (менее точных) измеряемую величину определяют по показаниям измерительного прибора.

Измерительные мосты подразделяются на неавтоматические и автоматические.

В неавтоматических

мостах балансирование производится вручную (оператором).

В автоматических

балансировка моста происходит с помощью сервопривода по величине и знаку напряжения между точками D и B (см. рисунок).

Где используют измерительный мост Уитстона?

Измерительные элементы применяют в работе с кабельными линиями из металла. Они позволяют нейтрализовать постороннее влияние для более эффективной локализации дефектов. Гарантированы высокоточные результаты в рамках диапазона измеряемых величин.

С помощью мостовой схемы Уитстона можно вычислить сопротивление изменяющегося элемента. Схемы используют в конструкциях электронных весов, электронных термометров и терморезисторов.

Среди промышленных образцов широко известны приборы с ручной калибровкой равновесия:

  • ММВ – измеряет сопротивление проводника постоянного напряжения;
  • Р333 – схема одинарного моста, с помощью которой выявляется поврежденный участок кабеля.

История создания

В 1833 году Самуэль Хантер Кристи (англ. Samuel Hunter Christie) предложил схему, позже получившую название «мост Уитстона».

В 1843 году схема была усовершенствована Чарльзом Уитстоном (англ. Charles Wheatstone) и стала называться «мостом Уитстона».

В 1861 году лорд Кельвин использовал мост Уитстона для измерения малых сопротивлений.

В 1865 году Максвелл с помощью изменённого моста Уитстона измерял силу переменного тока.

В 1926 году Алан Блюмлейн усовершенствовал мост Уитстона и запатентовал. Новое устройство стали называть в честь изобретателя.

Мост Уитстона

Мост Уитстона был первоначально разработан Чарльзом Уитстоном, чтобы измерить неизвестные значения сопротивления и как средство калибровки измерительных приборов, вольтметров, амперметров и т. Д., Используя длинный резистивный провод скольжения. Хотя сегодня цифровые мультиметры обеспечивают самый простой способ измерения сопротивления. Мост Уитстона все еще можно использовать для измерения очень низких значений сопротивлений в диапазоне милли-Ом. Мост моста Уитстона (или мост сопротивления) может использоваться в ряде приложений, и сегодня, с современными операционными усилителями, мы можем использовать мост моста Уитстона для подключения различных преобразователей и датчиков к этим схемам усилителя. Контур моста Уитстона представляет собой не что иное, как два простых последовательно-параллельных устройства сопротивлений, соединенных между клеммой источника питания и землей, создающей разность нулевого напряжения между двумя параллельными ветвями при балансировке. Мостовая схема Уитстона имеет две входные клеммы и две выходные клеммы, состоящие из четырех резисторов, сконфигурированных в алмазоподобном устройстве, как показано. Это типично для того, как нарисован мост Уитстона.

При балансировке мост Уитстона можно анализировать просто как две серии последовательностей. В нашем учебнике о резисторах в сериях мы видели, что каждый резистор в цепочке серий производит инфракрасное падение или падение напряжения на себя как следствие протекания тока через него, как это определено законом Ом. Рассмотрим последовательную схему ниже.

Поскольку два резистора последовательно, один и тот же ток ( i ) проходит через оба из них. Поэтому ток, протекающий через эти два резистора последовательно, задается как: V / R T.

I = V ÷ R = 12 В ÷ (10 Ом + 20 Ом) = 0,4 А

Напряжение в точке C , которое также является падением напряжения на нижнем резисторе, R 2 рассчитывается как:

V R2 = I × R 2 = 0,4A × 20Ω = 8 вольт

Затем мы видим, что напряжение источника V S делится между резисторами двух рядов прямо пропорционально их сопротивлениям как V R1 = 4V и V R2 = 8V . Это принцип деления напряжения, создающий то, что обычно называют цепью делителя напряжения или сетью делителя напряжения. Теперь, если мы добавим еще одну последовательную резисторную схему, используя те же самые значения резисторов параллельно с первой, у нас будет следующая схема.

Поскольку схема второй серии имеет одинаковую резистивную величину первой, напряжение в точке D , которое также является падением напряжения на резисторе, R 4 будет одинаковым при 8 вольтах относительно нуля (отрицательный аккумулятор), поскольку Напряжение является общим, и две резистивные сети одинаковы. Но что-то еще в равной степени важно, так это то, что разность напряжений между точкой C и точкой D будет равна нулю, так как обе точки имеют одинаковое значение 8 вольт, так как: C = D = 8 вольт , тогда разность напряжений равна 0 вольтам . Когда это происходит, обе стороны параллельной сети моста считаются сбалансированными, потому что напряжение в точке C является тем же значением, что и напряжение в точке D, причем их разность равна нулю. Теперь давайте рассмотрим, что произойдет, если мы изменим положение двух резисторов R 3 и R 4 во второй параллельной ветви по отношению к R 1 и R 2 .

С резисторами R 3 и R 4 меняются назад, тот же ток протекает через последовательную комбинацию и напряжение в точке D , которое также является падением напряжения на резисторе, R 4 будет:

V R4 = 0,4 А × 10 Ом = 4 вольта

Теперь, когда V R4, имеющий 4 вольта, упал на него, разность напряжений между точками C и D будет составлять 4 вольта, так как: C = 8 вольт и D = 4 вольта . Тогда разница на этот раз: 8 – 4 = 4 вольта

Результатом замены двух резисторов является то, что обе стороны или «плечи» параллельной сети отличаются друг от друга, поскольку они создают различные падения напряжения. Когда это происходит , параллельная сеть считается несимметричной , поскольку напряжение в точке C находится под другим значением напряжения в точке D. Затем мы видим, что отношение сопротивления этих двух параллельных рычагов, ACB и ADB приводит к разности напряжений между 0 вольтами (сбалансированным) и максимальным напряжением питания (неуравновешенным), и это основной принцип схемы моста Уитстона . Таким образом, мы видим, что схема моста Уитстона может использоваться для сравнения неизвестного сопротивления R X с другими известными значениями, например R 1 и R 2 , с фиксированными значениями, а R 3 может быть переменным. Если бы мы подключили вольтметр, амперметр или классически гальванометр между точками C и D , а затем меняли резистор, R 3 до тех пор, пока счетчики не начнут отсчитывать ноль, это приведет к балансу двух рычагов и значению R X (заменяя R 4 ) Как показано.

Цепь моста Уитстона

Путем замены R 4 выше на сопротивление известного или неизвестного значения в чувствительном плече моста Уитстона, соответствующего R X, и настройке противоположного резистора, R 3 для «балансировки» сети моста приведет к выводу нулевого напряжения. Затем мы видим, что баланс происходит, когда:

Уравнение Моста Уитстона, необходимое для определения значения неизвестного сопротивления, R X при балансе задается как:

Где резисторы, R 1 и R 2 являются известными или заданными значениями.

Мост Уитстона Пример №1

Построен следующий несбалансированный мост Уитстона. Рассчитайте выходное напряжение в точках C и D и значение резистора R 4, необходимое для баланса мостовой схемы.

Для первого ряда arm, ACB

Для группы второго ряда, АБР

Напряжение в точках CD определяется как:

Значение резистора R 4, необходимое для уравновешивания моста, определяется как:

Мы видели выше, что мост Уитстона имеет два входных терминала ( AB ) и два выходных терминала ( CD ). Когда мост сбалансирован, напряжение на выходных клеммах составляет 0 вольт. Однако, когда мост не сбалансирован, выходное напряжение может быть как положительным, так и отрицательным в зависимости от направления дисбаланса.

Светодиодный детектор на мосте Уитстона

Сбалансированные мостовые схемы находят много полезных электронных приложений, например, для измерения изменений интенсивности света, давления или деформации. Типы резистивных датчиков, которые могут использоваться в мостовой схеме пшеничного мостика, включают: фоторезистивные датчики (LDR), позиционные датчики (потенциометры), пьезорезистивные датчики (тензодатчики) и температурные датчики (термисторы) и т. Д. Существует множество применений мостовых мостовых косточек для измерения целого ряда механических и электрических величин, но одно очень простое применение мостового мостового слоя заключается в измерении света с помощью фоторезистивного устройства. Один из резисторов в сети моста заменяется резистором, зависящим от света, или LDR. LDR, также известный как кадмий-сульфидный (Cds) фотоэлемент, представляет собой пассивный резистивный датчик, который преобразует изменения уровня видимого света в изменение сопротивления и, следовательно, напряжения. Светоизлучающие резисторы могут использоваться для мониторинга и измерения уровня интенсивности света, или источник света включен или выключен. Типичная кадмиевая сульфидная (CdS) ячейка, такая как резистор, зависящий от света ORP12, обычно имеет сопротивление около одного Megaohm (MΩ) в темном или тусклом свете, около 900 Ом при интенсивности света 100 люкс (типичный для хорошо освещенной комнаты), До 30 Ом при ярком солнечном свете. Затем при увеличении интенсивности света сопротивление уменьшается. Подключив резистор, зависящий от света, к схеме моста Уитстона выше, мы можем отслеживать и измерять любые изменения уровней освещенности, как показано на рисунке.

Фотоэлемент LDR подключается к схеме моста Уитстона, как показано на рисунке, для создания светочувствительного переключателя, который активируется, когда измеряемый уровень света выходит выше или ниже заданного значения, определенного V R1 . В этом примере V R1 используется потенциометр 22k или 47k. ОУ-усилитель подключается как компаратор напряжения с опорным напряжением V D , применяемым к инвертирующему выводу. В этом примере, поскольку оба R 3 и R 4 имеют одинаковое значение 10 кОм , опорное напряжение, установленное в точке D, будет поэтому равно половине Vcc. Это Vcc / 2 . Потенциометр V R1 устанавливает напряжение отключения V C , которое подается на неинвертирующий вход и устанавливается на требуемый номинальный уровень освещенности. Реле включается «ON», когда напряжение в точке C меньше напряжения в точке D. Регулировка V R1 устанавливает напряжение в точке C для балансировки мостовой схемы на требуемом уровне освещенности или интенсивности. LDR может представлять собой любое сульфидное устройство кадмия, которое имеет высокий импеданс при низких уровнях освещенности и низкий импеданс при высоких уровнях освещенности. Обратите внимание, что схема может использоваться как «световая активированная» коммутационная схема или «темная активированная» коммутационная схема просто путем переноса положений LDR и R 3 в рамках конструкции. Мост Уитстона имеет много применений в электронных схемах, кроме сравнения неизвестного сопротивления с известным сопротивлением. При использовании с операционными усилителями мостовую схему Уитстона можно использовать для измерения и усиления небольших изменений сопротивления, например RX, к изменениям интенсивности света, как мы видели выше. Но мостовая схема также подходит для измерения изменения сопротивления других изменяющихся величин, поэтому, заменив вышеуказанный фоторезистивный датчик LDR для термистора, датчика давления, тензодатчика и других таких преобразователей, а также заменив положения LDR и V R1 , мы можем использовать их в различных других приложениях моста Уитстона. Кроме того, в четырех плечах (или ветвях) моста, образованного резисторами R 1 -R 4, может использоваться более одного резистивного датчика для создания «полномостового», «полумостового» или «четвертьмостового» схем, обеспечивающего Тепловая компенсация или автоматическая балансировка моста Уитстона.

Измерительный мост

Измерительный мост – электрическая схема, усовершенствованная английским физиком Чарльзом Уинстоном. Она источник постоянного тока и базовая мостовая схема, которую применяют в конструкциях многих измерительных приборов. Например, в устройствах контроля и измерения температур – термометрах.

Что такое измерительный мост?

Как пример, объясняющий электросхему моста, возьмём терморезистор или термометр. В таких системах механизм ставят в одной ветви схемы. Можно провести аналогию с аптечными весами. Разница только в том, что мост — электрическое устройство.

Рычажные весы и приборы с мостовой схемой действуют компенсационным способом. Величина тока в по Уинстону есть разница между сопротивлениями — чем она выше, тем обширнее протекает электрический ток. При изменении разности меняется и количество электрических зарядов.

Это свойство применяют в различных системах и приборах контроля. Точность замеров достигается за счет изменения сопротивления. Во время измерения электричества, проходящего через измерительный мост постоянного тока, обнаруживаются любые изменения физической величины сопротивления.

Принцип работы моста Уитстона

Мостовая схема Ч. Уинстона состоит из 2-х плеч. В каждом 2 резистора. Соединяет 2 параллельные ветви еще одна. Ее название – мостик. Ток проходит от клеммы с минусом к верхнему пику мостовой схемы.

Разделившись по 2 параллельным ветвям, ток идёт к положительной клемме. Величина сопротивления в каждой ветви непосредственно влияет на количество тока. Равное сопротивление на обеих ветвях говорит о том, что в них течет аналогичное количество тока. В таких условиях мостовой элемент уравновешен.

Если в ветвях неравное сопротивление, ток в электросхеме начинает движение от ветви с высоким уровнем сопротивления к ветви с наименьшим. Так продолжается, пока 2 верхних элемента цепей остаются равны по своей величине. Аналогичное положение резисторы имеют в схемах, которые используют в системах контроля и измерения.

Типы и модификации измерительных мостов

Основная схема измерительного моста – Уинстона. Одинарный мост меряет сопротивление от 1 Ом до 100 Мом. Но есть и модификации, позволяющие измерять разные типы сопротивлений — те, для которых базовая схема не годится.

Разновидности

  1. Небольшие сопротивления измеряются посредством прибора Кери Фотера. Можно узнать разницу между противодействиями больших значений.
  2. Еще один тип – делитель Кельвина-Варлея. Применяется в приборах лабораторного оборудования. Максимальная измеряющая способность, зафиксированная этим делителем напряжения, достигает 1,0*10-7.
  3. Мост Кельвина, который в некоторых странах называют именем Томсона, предназначен для замера неизвестных сопротивлений небольших величин (меньше 1 Ом). По принципу работы похож на одинарный мост Уинстона. Разница лишь в наличии дополнительного сопротивления, снижающего погрешности в измерении, которые появляются в результате падения напряжения в одном из плеч.
  4. Еще один тип – мост Максвелла. Измеряет низкодобротную индуктивность неизвестной величины.

Схемы измерительных мостов

Измерительные мосты переменного тока делят на 2 группы: двойные и одинарные. Одинарные имеют 4 плеча. В них 3 ветви создают цепь с 4 точками подключения.

В диагонали моста есть электромагнитный гальванометр, показывающий равновесие. В другой диагонали моста действует источник постоянного питания. Измерения могут происходить с погрешностями, которые зависят от их диапазона. По мере роста сопротивления чувствительность прибора уменьшается.

Двойной мост называют шестиплечим. Его плечи – измеряемое сопротивление (Rx), резистор (Ro) и 2 пары дополнительных резисторов (Rl, R2, R3, R4).

Двойные измерительные мосты

Небольшие сопротивления измеряются двойными мостами, состоящими из таких компонентов:

  • резисторы R (4);
  • гальванометр;
  • резистор образцовый;
  • источник питания;
  • амперметр;
  • резистор, устанавливающий рабочий ток.

Чтобы узнать условия, при которых возникает равновесие, для замкнутых контуров применяют уравнение Кирхгофа. Соблюдается условие: по гальванометру должен идти нулевой ток.

Где используют измерительный мост Уитстона?

Измерительные элементы применяют в работе с кабельными линиями из металла. Они позволяют нейтрализовать постороннее влияние для более эффективной локализации дефектов. Гарантированы высокоточные результаты в рамках диапазона измеряемых величин.

С помощью мостовой схемы Уитстона можно вычислить сопротивление изменяющегося элемента. Схемы используют в конструкциях электронных весов, электронных термометров и терморезисторов.

Среди промышленных образцов широко известны приборы с ручной калибровкой равновесия:

  • ММВ – измеряет сопротивление проводника постоянного напряжения;
  • Р333 – схема одинарного моста, с помощью которой выявляется поврежденный участок кабеля.

Заключение

С помощью прибора Уинстона можно мерить индуктивность, содержание газа в воздухе или другом веществе, емкость и иные физические величины. Подробно о данных схемах можно прочитать в учебнике «Измерительные соединения». В книге представлены основные понятия, базовые методики, примеры, иллюстрирующие принцип действия.

Измерительные мосты постоянного тока

Важным классом средств измерений, предназначенных для измерения параметров элементов электрических цепей методом сравнения, являются мосты. Сравнение измеряемой величины (сопротивления, ёмкости, индуктивности) с образцовой мерой при помощи моста в процессе измерения может осуществляться вручную или автоматически, на постоянном или переменном токе.

Мостовые схемы обладают большой точностью, высокой чувствительностью, широким диапазоном измеряемых величин. На основе мостовых методов измерения создают как средства измерений, предназначенные для измерения какой-либо одной величины, гак и универсальные аналоговые и цифровые приборы.

Наиболее точные измерения сопротивления постоянному току выполняют с помощью мостов постоянного тока. Их делят на две группы: одинарные (четырёхплечие) и двойные (шестиплечие).

Одинарный мост, называемый мостом Уитстона, применяют для измерения сопротивлений от 1 Ом до 100 МОм. Двойной мост, называемый мостом Томпсона, – для измерения малых величин сопротивлений – от 110 6 до 1 Ом. В двойном мосту влияние величин, вызывающих погрешность измерения, сведено к минимуму.

Одинарный мост постоянною тока

Такой мост (рис. 10.17) содержит четыре резистора, соединённых в кольцевой замкнутый контур. Резисторы Rh R2, R3 и R4 этого контура называют плечами моста, а точки соединения соседних плеч – вершинами моста. Цепи, соединяющие противоположные вершины, называют диагоналями. Диагональ аЪ содержит источник питания и называется диагональю питания. Диагональ cd, в которую включён индикатор Г, называют измерительной диагональю. В мостах постоянного тока в качестве индикатора обычно используют гальванометр. Мосты постоянного тока предназначены для измерения активного сопротивления.

Одинарный мост постоянного тока

Рис. 10.17. Одинарный мост постоянного тока

В общем случае зависимость протекающего через гальванометр тока / от сопротивления плеч, сопротивления гальванометра R, и напряжения питания U имеет вид

Сопротивление измеряют в одном из двух режимов работы моста: уравновешенном либо неуравновешенном. Мост называется уравновешенным, если разность потенциалов между вершинами с к d равна нулю, а, следовательно, и ток через гальванометр равен нулю.

Из уравнения (10.19) следует, что 1 = 0 при условии

Это условие равновесия одинарного моста постоянного тока (10.25) можно сформулировать следующим образом: для того, чтобы мост был уравновешен, произведения сопротивлений противолежащих плеч моста должны быть равны. Если сопротивление одного из плеч моста (например, R4) неизвестно, то уравновесив мост путём подбора сопротивлений плеч R,, R2 и R3, находим Rx

В реальных мостах постоянного тока для уравновешивания моста регулируют отношение и сопротивление плеча Rj,

которые соответственно называют плечами отношения и плечом сравнения.

Сопротивления R/ и R? – известные фиксированные сопротивления в диапазоне 1 – 1.000 Ом. При этом отношение =

= 10“ 3 – 10 3 . Регулировкой сопротивления R_, уравновешивают мост. Погрешности измерения с помощью мостов постоянного тока зависят от диапазона измеряемых сопротивлений, наименьшие погрешности получают в диапазоне 100 Ом – 100 кОм.

В состоянии равновесия моста ток через гальванометр равен нулю и, следовательно, колебания напряжения питания и сопротивления гальванометра влияния на результат измерения не оказывают (важно лишь, чтобы чувствительность гальванометра была достаточной для надёжной фиксации состояния равновесия). Поэтому основная погрешность уравновешенного моста определяется чувствительностью гальванометра, чувствительностью схемы, погрешностью сопротивлений плеч, а также сопротивлениями монтажных проводов и контактов.

При измерении малых сопротивлений существенным источником погрешности может быть сопротивление проводов, с помощью которых измеряемый резистор подключают к входным зажимам моста, гак как оно полностью входит в результат измерения. Поэтому нижний предел измерений одинарного моста постоянного тока ограничен значениями сопротивления порядка 2 Ом. Верхний же предел измерений составляет 10 6 – 10 s Ом и ограничивается чувствительностью гальванометра и влиянием сопротивления изоляции. При больших значениях измеряемого сопротивления токи в плечах моста очень малы и чувствительности гальванометра недостаточно для чёткой фиксации равновесия.

В зависимости от требований к чувствительности мостовой схемы и к линейности функции преобразования можно различить три способа включения первичного измерительного преобразователя в мостовую схему.

Мост с первичным измерительным преобразователем, включённым в одно плечо моста (Rx = R/) (рис. 10.18 а).

Способы включения первичных измерительных преобразователей в мостовую схему

Рис. 10.18. Способы включения первичных измерительных преобразователей в мостовую схему

В этом случае при симметрии Rx = /С, R, = R.t и выполнении условий оптимального режима работы моста ток в гальванометре равен

При таком включении датчика имеет место большая нелинейность (е = входит в числитель и знаменатель), дости-

Мост с двумя датчиками, включёнными в противоположные плечи моста (Rx = Rj = R4) (рис. 10.18 б). Данное включение применяют, если хотят увеличить чувствительность схемы. Действительно, как известно, отклонение стрелки гальванометра пропорционально разности RjR4 – R2RЕсли сопротивления Rj и R4 увеличатся (или уменьшатся) на одну и ту же величину, то чувствительность схемы возрастёт вдвое по сравнению со схемой с одним датчиком. При таком включении преобразователей для компенсации температурной погрешности требуется включение в остальные два плеча нерабочих преобразователей, аналогичных R, и R4.

Недостатком такого включения первичных измерительных преобразователей является большая нелинейность статической характеристики

Из уравнения (10.28) следует, что в данном случае нелинейность шкалы будет гораздо больше, чем в предыдущем случае (7-10 %).

Мост с двумя датчиками, включёнными в два соседних плеча моста (Rx = Rf = R3) (рис. 10.18 в). Это преобразователи дифференциального типа. Два сопротивления под действием неэлектрической величины изменяются с противоположными знаками. Тогда ток в гальванометре будет равен

где с – коэффициент пропорциональности.

При выполнении оптимальных условий (при симметрии Rx = R2, Rj = R4) получим

откуда следует, что шкала прибора с дифференциальными датчиками имеет наименьшую нелинейность по сравнению с предыдущими (около 0,5 %).

Таким образом, для достижения наибольшей чувствительности мостовой схемы в сочетании с наименьшей нелинейностью статической характеристики нужно пользоваться дифференциальной схемой измерения.

Погрешности сопротивлений монтажных проводов и переходных контактов исключаются в двойных мостах (рис. 10.19).

Двойной мост постоянного тока

Рис. 10.19. Двойной мост постоянного тока

В этом двойном мосту используют резисторы Яч и Яб, чтобы исключить влияние сопротивления соединительных проводников. Мост называют двойным, так как он содержит два комплекта плеч отношения.

При равновесии моста величина сопротивления Ях = Я4 определяется выражением

На практике значения Rh Я2, Я5 и Я6 выбирают такими, чтобы выполнялось соотношение

При этом условии вторым членом (10.31) можно пренебречь. Чтобы проверить выполнение условия (10.32), мост уравновешивается, а затем проводник г убирают, что не должно влиять на равновесие моста. Следовательно, двойной мост компенсирует малое сопротивление г. На практике для исключения влияния соединительных проводов сопротивление резисторов Я/, Я2, Я5 и Я6 выбирают более 10 Ом, а сопротивления Я3 и Я4 имеют токовые и потенциальные зажимы и примерно один порядок величины. Чтобы исключить влияние термоэдс, берут два отсчёта при разных полярностях батареи, а затем усредняют результат.

Двойной мост обеспечивает погрешность измерения менее 0,05 % для сопротивлений в диапазоне 10” 6 – 1 Ом.

Чувствительность моста тем больше (а следовательно, погрешность от неполного уравновешивания тем меньше), чем выше чувствительность мостовой схемы и гальванометра.

Промышленность выпускает одинарные и одинарнодвойные мосты постоянного тока классов точности от 0,005 до 5.

В режиме неуравновешенного моста сопротивление измеряют по показаниям гальванометра, предварительно в комплекте с мостовой схемой отградуированного в единицах сопротивления.

Неуравновешенные мосты по точности значительно уступают уравновешенным, так как на результат измерения кроме факторов, указанных для уравновешенных мостов, оказывают влияние колебания напряжения питания и сопротивления гальванометра.

Автоматические измерительные мосты

Помимо измерительных мостов с ручным уравновешиванием широко применяют автоматические мосты, в которых вместо нулевого индикатора используют усилитель. Усиленный сигнал рассогласования приводит во вращение реверсивный двигатель, который изменяет сопротивление одного из плеч моста до достижения равновесия. Автоматические измерительные мосты применяют для измерения неэлектрических величин, преобразованных в какой-либо пассивный электрический параметр электрической цепи.

Измерительная схема уравновешенных мостов питается как постоянным, так и переменным током. В автоматических мостах переменного тока решающее значение имеют активные сопротивления, поэтому выведенные выше соотношения для мостов постоянного тока сохраняются и для автоматических мостов переменного тока. Последние имеют ряд преимуществ перед мостами постоянного тока: измерительная схема питается от одной из обмоток силового трансформатора электронного усилителя, т.е. не требуется дополнительного источника питания (сухого элемента) и отпадает необходимость в применении вибрационного преобразователя.

Существуют различные модификации автоматических уравновешенных мостов. В качестве примера рассмотрим принципиальную схему электронного автоматического уравновешенного моста на переменном токе (рис. 10.20). Резисторы RJf R2, R3 измерительной схемы с постоянными сопротивлениями выполнены из манганина, а реохорд RP — из манганина или специального сплава. Измерительная схема питается напряжением переменного тока 6,3 В.

Напряжение разбаланса на вершинах моста а и b подается на вход электронного усилителя ЭУ. В нем оно усиливается до величины, достаточной для приведения в действия реверсивного электродвигателя. Ротор двигателя, вращаясь в ту или другую сторону (в зависимости от знака разбаланса моста), через систему передач перемещает движок реохорда, уравновешивая измерительную схему моста, а также перемещает показывающую стрелку. Если мост находится в равновесии, то ротор реверсивного двигателя не вращается, так как напряжение на вход электронного усилителя не подаётся.

Аналогичную схему имеет и уравновешенный мост на постоянном токе. В нём электронный усилитель имеет вибрационный преобразователь, поэтому узел усиления у него такой же, как у потенциометра.

Уравнение шкалы уравновешенного моста зависит от положения движка реохорда. Условие равновесия при произвольном значении R, (см. рис. 10.20, а) имеет вид

Принципиальная схема автоматического уравновешенного моста на переменном токе с соединением по двухпроводной (а) и трёхпроводной (б) схеме

Рис. 10.20. Принципиальная схема автоматического уравновешенного моста на переменном токе с соединением по двухпроводной (а) и трёхпроводной (б) схеме

Вся длина реохорда т равна 1 при значении сопротивления R,, соответствующего верхнему пределу измерений.

Из уравнения (10.20) следует

Градуировочная характеристика схемы, показанной на рис. 10.20 а, нелинейная, гак как т изменяется не но линейному закону.

Для схемы на рис. 10.20 б аналогично находим

R2 R, RA-R

отсюда т =-—— ? —.следовательно, градуиро-

вочная характеристика линейная.

Измерительная схема на рис. 10.20 б более совершенна, поэтому её широко используют в современных автоматических мостах.

Номинальное сопротивление каждого из соединительных проводов Яя при градуировке прибора принято равным 2,5 Ом.

Серийно изготовляемые автоматические уравновешенные мосты можно использовать для измерения температуры с полупроводниковыми терморезисторами. В связи с большой разницей в характеристиках металлических и полупроводниковых термометров сопротивления измерительную схему моста следует рассчитывать.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: