Преобразователи напряжения: виды, особенности и принцип работы

Преобразователь напряжения

Преобразователь напряжения – устройство, изменяющее вольтаж цепи. В литературе зарубежной подразумевается: речь касается цепей переменного напряжения, в противном случае устройство называют преобразователем постоянного тока. Последние рассматриваются полноценными членами семейства.

Назначение преобразователей напряжения

Необходимость использования устройств подобного рода возникает, когда требуется электрический прибор внедрить в регионе, где стандарты промышленных сетей снабжения энергией отличаются от заложенных разработчиками изделия. Частоты и амплитуда напряжения США противопоставлены Европе, России. Видим ряд причин. Тесла заметил: при увеличении частоты возможно драматически снизить вес медной обмотки трансформатора, при достижении параметром значения 700 Гц электричество становится в большой мере безопасным для человеческого организма. Параллельно растут потери сердечников, начинается излучение электромагнитной волны в пространство.

Преобразователь вольтажа цепи

Оценив весомость аргументов, США под влиянием Николы Тесла узаконили частоту 60 Гц. В России (Европе) приняли к сведению доводы прославленного инженера Доливо-Добровольского (обосновал выгодность использования трехфазных сетей). На протяжении Евразии стали эталоном де-факто 50 Гц. Амплитуды напряжения выбирали удобную. 220 вольт опасны для человека, потребитель одновременно затрачивает меньший ток. Сечение медных проводников допустимо ощутимо снизить. Американские 110 вольт переменного тока нельзя считать безопасными полностью. Люди осведомлены, наученные боевиками, не раз главный герой уничтожал врага электрическим разрядом местной энергосети.

Влияние параметров на технику описываются просто:

  1. Частота оборотов двигателя определена амплитудой приложенного напряжения. Скорость вращения вала асинхронного двигателя с короткозамкнутым ротором напрямую зависит от частоты питающей сети.
  2. Нагревательные приборы рассчитаны на рабочий ток, пропорциональный величине напряжения. Сопротивление преимущественно активное. Мощность изменяется вчетверо (ток берется в квадрате) при аналогичном варьировании между сетями 110/220 вольт. Потребитель ожидает от изделия номинальных параметров, прибор может быть не рассчитан на нестандартную эксплуатацию.
  3. Бытовая техника в составе часто использует напряжения отличные от сетевых со строго определенной амплитудой. Обеспечиваются условия блоком питания. Для нормальной работы требуется преобразователь напряжения.

Зачем мировой практике разные напряжения

Электрификация в массовом порядке велась с начала XX века. Участвовало великое количество людей, каждый преследовал, помимо объективных, собственные интересы. Эдисон продвигал постоянное напряжение, Тесла назло – переменное. Доливо-Добровольский имел основания недолюбливать второго ученого (конфликт интересов в сфере трёхфазных сетей), возможно, частоту 50 Гц ввел наперекор США, Европа прислушалась к мнению более близкого той окрестности инженера.

Что касается СССР, нет сомнений: вольтаж на 220 вольт оставлен только из военных, стратегических соображений противостояния в холодной войне. Диаметр сигареты соответствовал калибру патрона для скорейшего перевода оборудования на выпуск специфической продукции.

Местоположение преобразователей напряжения в общей классификации

С позволения авторов Википедии приведем классификацию преобразователей электроэнергии различного рода, чтобы читатели понимали, где расположился объект сегодняшней беседы:

  • Постоянного тока:
  1. Преобразователи уровня напряжения (обсуждался выше).
  2. Регуляторы напряжения.
  3. Линейный стабилизатор напряжения.

Базовый регулятор линейного напряжения

Базовый регулятор линейного напряжения

  • Переменный ток в постоянный:
  1. Выпрямители.
  2. Блоки питания.
  3. Импульсные стабилизаторы напряжения.
  • Постоянный ток в переменный:
  1. Инверторы.
  • Переменного напряжения:
  1. Трансформаторы различного рода.
  2. Преобразователи напряжения.
  3. Регуляторы напряжения.
  4. Преобразователи формы и частоты напряжения.
  5. Трансформаторы переменной частоты.

Преобразователи напряжения образуют еще два класса. Блоки питания в первую очередь. Каждый содержит в своём составе преобразователь напряжения. Трансформатор. Преобразователи уровня подходят под отечественное определение предмета беседы, выделяются в отдельный класс. Вопрос ставится книгой М.А. Шустова по рассматриваемой теме.

Классификация преобразователей напряжения

Проведём первичную классификацию преобразователей напряжения:

    В первую очередь, блоки питания аппаратуры. Уверены, читателям близкими покажутся системные блоки персональных компьютеров. Заглянем внутрь. Импульсный блок питания персонального компьютера содержит трансформатор с множеством обмоток, каждая работает на один номинал. Из переменного напряжения 230 (или 110) вольт получается ряд постоянных: +5, -5, +12, -12. Но! Последующим выпрямлением переменного тока диодами Шоттки.

Адаптер напряжения встроен в блок питания

Переключатель напряжения встроен в блок питания

Используя обычные трансформаторы или автотрансформаторы для преобразования амплитуды напряжения, помним о частоте. Многие двигатели, сконструированные для работы на 60 Гц, будут перегреваться сетями 50 Гц, пусть амплитуда напряжения соответствует заданной. Что касается встроенных опций блоков питания, далеко не всегда присутствует возможность переключить настройки. Изделие способно маркироваться наклейкой (помимо заводского шильдика), доступно поясняющей условия работы прибора, согласно предназначению. Что касается расхождений между Европой и Россией (230 – 220 = 10 вольт), указанное несоответствие не сильно влияет на работу (есть негативные моменты). Отмечали в предыдущих топиках влияние параметра на срок службы лампочек накала, электронных ламп.

Маркировка наклейкой

В соответствии с конструкцией в электронике преобразователи напряжения делят так:

  1. Бестрансформаторные конденсаторные.
  2. С коммутируемыми конденсаторами.
  3. Мультиплексорные.
  4. Импульсные преобразователи.
  5. Импульсные источники питания.
  6. Трансформаторные с импульсным возбуждением.
  7. Автогенераторные.
  8. На пьезоэлектрических трансформаторах.

Конструкция преобразователей напряжения

С ростом частоты увеличиваются потери, вызванные вихревыми токами, в сердечниках трансформаторов. Явление пытаются пресечь путем шихтования. Сердечник разделяется на пластины, с плоскостью параллельной линиям магнитного поля. Используется особая электротехническая сталь с высоким удельным сопротивлением.

Читайте также:
Распродажа паркетной доски в спб

По мере роста частоты магнитный поток вытесняется толщей сердечника наружу. Ферромагнитные материалы применяют для увеличения индуктивности. На высоких частотах становится нецелесообразным по указанной выше причине. Магнитная проницаемость перестает расти, нет смысла изготавливать подобный сердечник. На ВЧ широко используются магнитодиэлектрики прессованным порошком. Устраняя потери, созданные вихревыми токами. Сила магнитного потока сильно снижается. Периодичность законов изменения тока, напряжения диктует следующее правило…

Энергия, запасенная преобразователем за период, пропорциональна квадрату емкости или индуктивности системы.

В устройствах используют накопители индуктивного или емкостного типа. Это объясняет применение ферромагнитных материалов блоками питания, объясняет, почему Тесла в опытах шел иным путем. Ученый для создания токов высокой частоты использовал колебательные контуры. Аналогичным путем сегодня движется техника преобразователей напряжения. Для постоянного тока конструкция выглядит такова:

  1. Входное напряжение становится одновременно питающим.
  2. Сердцем преобразователя выступает генератор переменного напряжения. Известный мультивибратор (триггер на двух транзисторах), изображение доступно повсеместно. Иногда выгодно применять готовые микросхемы промышленных серий, инверторы.
  3. Результирующее напряжение переменное, часто прямоугольной формы. При необходимости усиливается, умножается или понижается (при помощи коммутируемых конденсаторов), выпрямляется, получается нужная полярность (преобразователь полярности напряжения). Заметим: эти каскады иногда выполнены на микросхемах. Мультиплексоры широко применяются для коммутации конденсаторов, запасающих мощность.

Преобразователь напряжения не строится напрямую без трансформатора. Однако если отклоняться от строго определения, удастся решить разнообразные задачи. Любой мультивибратор содержит цепочку RC, что и применил Тесла. Для получения напряжения нужно полярности применяется должным образом выполненное включение диодов и фильтрующих конденсаторов. Выпрямитель делается мостовым (см. Диодный мост).

Подобные схемы на практике встречаются в электронике по простой причине: сложно получить высокую мощность. Не создано полупроводниковых ключей, обходящих ограничение, емкости конденсаторов потребовались бы просто гигантские. Поэтому производители постоянно борются за экономию электроэнергии.

Системный блок ПК применяет импульсные трансформаторы, генерации стабильной чистоты используются кварцевые резонаторы. Укажем отличие. Работа с высокочастотным напряжением, позволяет значительно уменьшить количество запасенной за период колебания энергии. Габариты трансформаторов можно сильно уменьшить, вредные ферромагнитные сердечники выбросить вовсе, понизив вес. Имеются конструктивные особенности и другого рода. Как пишет выдающийся схемотехник М.А. Шустов:

  1. Индуктивные преобразователи меньших габаритов при прочих равных. Поэтому применяются для повышенных мощностей. Что видим на примере трансформаторов.
  2. Что касается емкостных преобразователей, выгодно использовать для малых мощностей. Вспомним о мультивибраторах с RC цепочкой.

Слышали про «трансформаторы» постоянного напряжения. Допустимо отнести к конструктивным особенностям. В составе генератора используется звено обратной связи – кристалл кварца. Запасающий конденсатор управляет режимом работы транзистора, переменное напряжение в виде акустической волны проходит пьезоэлемент. В силу очевидных обстоятельств рабочие частоты лежат в области единиц МГц, мощность мала. Понятно, что напрямую постоянное напряжение система передавать неспособна, термин трансформатор применяется иносказательно.

Все виды преобразователей напряжения

Преобразователи напряжения широко используются как в быту, так и на производстве. Для производства и промышленности чаще всего изготавливаются по индивидуальному заказу, ведь там нужен мощный преобразователь и не всегда с напряжением стандартной величины. Стандартные величины выходных и входных параметров применяются зачастую в бытовых условиях. То есть преобразователь напряжения — это электронное устройство, которое предназначено для изменения вида электроэнергии, её величины или же частоты.

По своей функциональности они делятся на:

  1. Понижающие;
  2. Повышающие;
  3. Бестрансформаторные;
  4. Инверторные;
  5. Регулируемые с настройкой частоты и величины выходного переменного напряжения;
  6. Регулируемые с настройкой величины постоянного выходного напряжения.

Некоторые из них могут выполняться в специальном герметичном исполнении, такие типы устройств используются для влажных помещений, или же, вообще, для установки под водой.

Итак, что же из себя представляет каждый вид.

Высоковольтный преобразователь напряжения

Схема 1

Такое электронное устройство, которое предназначено для получения переменного или постоянного высокого напряжения (до нескольких тысяч вольт). Например, такие устройства применяются для получения высоковольтной энергии на кинескопы телевизоров, а также для лабораторных исследований и проверки электрооборудования напряжением, повышенным в несколько раз. Кабеля или же силовые цепи масляных выключателей, рассчитанных на напряжение 6 кВ, испытывают напряжением 30 кВ и выше, правда, такая величина напряжения не обладает высокой мощностью, и при пробое сразу же отключается. Эти преобразователи довольно компактны ведь их приходится переносить персоналу от одной подстанции к другой, чаще всего вручную. Нужно заметить, что все лабораторные блоки питания и преобразователи обладаю почти эталонным, точным напряжением.

Читайте также:
Подъемные окна — описание видов по типу профиля

Более простые высоковольтные преобразователи применяются для запуска люминесцентных ламп. Сильно повысить импульс до нужного можно за счёт стартера и дросселя, которые могут иметь электронную или же электромеханическую основу.

Промышленные установки, выполняющие преобразование более низкого напряжения в высокое, имеют множество защит и выполняются на повышающих трансформаторах (ПТН). Вот одна из таких схем дающая на выходе от 8 до 16 тысяч Вольт, при этом для его работы необходимо всего около 50 В.

Из-за того, что в обмотках трансформаторов вырабатывается и протекает довольно высокое напряжение, то и к изоляции этих обмоток, а также к её качеству предъявляются высокие требования. Для того чтобы устранить возможность появления коронирующих разрядов, детали высоковольтного выпрямителя должны быть припаяны к плате аккуратно, без заусенцев и острых углов, после чего залиты с обеих сторон эпоксидной смолой или слоем парафина толщиной 2…3 мм, обеспечивающим изоляцию друг от друга. Иногда данные электронные системы и устройства называют повышающий преобразователь напряжения.

Следующая схема представляет собой линейный резонансный преобразователь напряжения, который работает в режиме повышения. Он основан на разделении функций повышения U и его чёткой стабилизации в абсолютно разных каскадах.

При этом некоторые инверторные блоки можно заставить работать с минимальными потерями на силовых ключах, а также на выпрямленном мосте, где появляется высоковольтное напряжение.

Преобразователь напряжения для дома

С преобразователями напряжения для дома обычный человек сталкивается очень часто, ведь во многих устройствах есть блок питания. Чаще всего это понижающие преобразователи, имеющие гальваническую развязку. Например, зарядные устройства мобильных телефонов и ноутбуков, персональные стационарные компьютеры, радиоприёмники, стереосистемы, различные медиапроигрыватели и этот перечень можно продолжать очень долго, так как их разнообразие и применения в быту в последнее время очень широко.

Беперебойник

Бесперебойные блоки питания оснащены накопителями энергии в виде аккумуляторов. Такие устройства применяются также для поддержания работоспособности системы отопления, во время неожиданного отключения электроэнергии. Иногда преобразователи для дома могут быть выполнены по инверторной схеме, то есть подключив его к источнику постоянного тока (аккумулятору), работающего за счёт химической реакции можно получить на выходе обычное переменное напряжение, величина которого будет 220 Вольт. Особенностью данных схем является возможность получить на выходе чистый синусоидальный сигнал.

Одной из очень важных характеристик, применяемых в быту преобразователей, является стабильная величины сигнала на выходе устройства, независимо от того сколько вольт подаётся на его вход. Эта функциональная особенность блоков питания связана с тем, что для стабильной и продолжительной работы микросхем и других полупроводниковых устройств необходимо чётко нормированное напряжение, да ещё и без пульсаций.

Основными критериями выбора преобразователя для дома или квартиры являются:

  1. Мощность;
  2. Величина входного и выходного напряжения;
  3. Возможность стабилизации и её пределы;
  4. Величина тока на нагрузке;
  5. Минимизация нагрева, то есть лучше чтобы преобразователь работал в режиме с запасом по мощности;
  6. Вентиляция устройства, может быть естественная или принудительная;
  7. Хорошая шумоизоляция;
  8. Наличие защит от перегрузок и перегрева.

Выбор преобразователя напряжения дело не простое, ведь от правильно выбранного преобразователя зависит и работа питаемого устройства.

Бестрансформаторные преобразователи напряжения

Схема 3

В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена. Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя. Вот простейший преобразователь переменного напряжения в постоянное. Роль регулирующего элемента играет тиристор.

Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.

Преобразователи постоянного напряжения

Преобразователь переменного напряжения в постоянное является самым часто используемым видом устройства этого типа. В быту это всевозможные блоки питания, а на производстве и в промышленности это питающие устройства:

  • Всех полупроводниковых схем;
  • Обмоток возбуждения синхронных двигателей и двигателей постоянного тока;
  • Катушек соленоидов масляных выключателей;
  • Оперативных цепей и цепей отключения там, где катушки требуют постоянного тока.

Тиристорный преобразователь напряжения — это наиболее часто применяемый для этих целей аппарат. Особенностью этих устройств является полное, а не частичное, преобразование переменного напряжения в постоянное без всякого рода пульсаций. Мощный преобразователь напряжения такого типа обязательно должен включать в себя радиаторы и вентиляторы для охлаждения, так как все электронные детали могут работать долго и безаварийно, только при рабочих температурах.

Читайте также:
Сантехнический шкаф в туалет, назначение, а также плюсы и минусы

Регулируемый преобразователь напряжения

Регулируемый преобразотель

Эти устройства направлены на работу как в режиме повышения напряжения, так и в режиме понижения. Чаще всего это всё-таки аппараты, выполняющие плавную регулировку величины выходного сигнала, который ниже входного. То есть на вход подаётся 220 Вольт, а на выходе получаем регулируемую постоянную величину, допустим, от 2 до 30 вольт. Такие приборы с очень тонкой регулировкой применяются для проверки стрелочных и цифровых приборов в лабораториях. Очень удобно когда они оснащены цифровым индикатором. Нужно признать, что каждый радиолюбитель брал за основу своих первых работ именно этот вид, так как питание для определённой аппаратуры может быть разное по величине, а этот источник питания получался весьма универсальным. Как сделать качественный и работающий долгое время преобразователь, вот основная проблема юных радиолюбителей.

Инверторный преобразователь напряжения

инверторный преобразователь

Данный тип преобразователей положен в основу инновационных компактных сварочных устройств. Получая для питания переменное напряжение 220 Вольт аппарат выпрямляет его, после чего снова делает его переменным, но уже с частотой несколько десятков тысяч Гц. Это даёт возможность значительно снизить габариты сварочного трансформатора, установленного на выходе.

Также инверторный способ применяется для питания отопительных котлов от аккумуляторных батарей в случае неожиданного отключения электроэнергии. За счёт этого система продолжает работать и получает 220 вольт переменного напряжения из 12 Вольт постоянного. Мощный повышающий аппарат такого назначения должен эксплуатироваться от батареи большой ёмкости, от этого зависит как долго он будет снабжать котёл электроэнергией. То есть емкость при этом играет ключевую роль.

Высокочастотный преобразователь напряжения

За счёт применения повышающих преобразователей появляется возможность уменьшения габаритов всех электронных и электромагнитных элементов, из которых состоят схемы, а это значит снижается и стоимость трансформаторов, катушек, конденсаторов и т. д. Правда, это может вызывать высокочастотные радиопомехи, которые влияют на работу других электронных систем, да и обычных радиоприёмников, поэтому нужно надёжно экранировать их корпуса. Расчет преобразователя и его помех должен производиться высококвалифицированным персоналом.

Что такое преобразователь сопротивления в напряжение?
Это особый вид, который используется только при производстве и изготовлении измерительных приборов, в частности, омметров. Ведь основа омметра, то есть прибора измеряющего сопротивление, выполнена в измерении падения U и преобразовании его в стрелочные или цифровые показатели. Обычно измерения производятся относительно постоянного тока. Измерительный преобразователь — техническое средство, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации, а также передачи. Он входит в состав какого-либо измерительного прибора.

Преобразователь тока в напряжение

В большинстве случаев все электронные схемы нужны для обработки сигналов, представленных в виде напряжения. Однако иногда приходится иметь дело с сигналом в виде тока. Такие сигналы возникают, например, на выходе фоторезистора или фотодиода. Тогда желательно при первой же возможности преобразовать токовый сигнал в напряжение. Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному U и не зависеть от R нагрузки. В частности, при постоянном входном U ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Ремонт преобразователя напряжения

Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ. Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно. Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.

Преобразователи напряжения. Виды и устройство. Работа

Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжения могут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

Читайте также:
Подставка на ванную своими руками

Устройство

Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:

  • Инвертирующие.
  • Повышающие.
  • Понижающие.
Общими для указанных видов преобразователей являются пять элементов:
  • Ключевой коммутирующий элемент.
  • Источник питания.
  • Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
  • Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение другого значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

Устройство трансформатора включает следующие элементы:
  • Магнитопровод.
  • Первичная и вторичная обмотка.
  • Каркас для обмоток.
  • Изоляция.
  • Система охлаждения.
  • Другие элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

Preobrazovateli napriazheniia povyshaiushchii

Существуют и другие виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.
  • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
  • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
  • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
  • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
  • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
  • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.
В иды

Преобразователи можно классифицировать по ряду направлений.

Преобразователи напряжения постоянного тока:
  • Регуляторы напряжения.
  • Преобразователи уровня напряжения.
  • Линейный стабилизатор напряжения.
Преобразователи переменного тока в постоянный:
  • Импульсные стабилизаторы напряжения.
  • Блоки питания.
  • Выпрямители.
Преобразователи постоянного тока в переменный:
  • Инверторы.
Преобразователи переменного напряжения:
  • Трансформаторы переменной частоты.
  • Преобразователи частоты и формы напряжения.
  • Регуляторы напряжения.
  • Преобразователи напряжения.
  • Трансформаторы разного рода.
Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:
  • На пьезоэлектрических трансформаторах.
  • Автогенераторные.
  • Трансформаторные с импульсным возбуждением.
  • Импульсные источники питания.
  • Импульсные преобразователи.
  • Мультиплексорные.
  • С коммутируемыми конденсаторами.
  • Бестрансформаторные конденсаторные.
Особенности
  • При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
  • Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
  • По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.

Preobrazovateli napriazheniia blok

Применение
  • Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6—24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
  • Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
  • Для питания различных цепей;
Читайте также:
Пончо с капюшоном спицами аранами

— автоматики в телемеханике, устройств связи, электробытовых приборов;
— радио- и телевизионной аппаратуры.

Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

Как работает преобразователь напряжения? Виды, мощность, схемы

В этой статье рассматриваются электросхемы преобразователей напряжения, назначение и принцип работы оборудования. Также здесь объясняется, какие бывают устройства, даются рекомендации по их выбору, указываются ключевые характеристики.

Содержание

Принцип работы преобразователей напряжения

Преобразователи представляют собой устройства, предназначенные для преобразования входного напряжения. Они могут повышать или понижать его, преобразовывать постоянный электроток в переменный и наоборот. Соответственно, принцип функционирования оборудования зависит от его типа. Существуют следующие основные разновидности устройств.

Преобразователи постоянного напряжения в постоянное

Они также называются DC/DC‑конвертеры. Применяются в вычислительной аппаратуре, средствах связи, схемах управления и автоматики. Обеспечивают снижение или повышение напряжения от источника электропитания (например, аккумуляторов или гальванических элементов) до нужного для питания нагрузки значения. Некоторые модели также могут инвертировать сигнал для получения напряжения с обратной полярностью. Электросхема конвертеров обычно включает такие элементы, как входной фильтр, конденсатор, катушки индуктивности, ключевого транзистора или тиристора, диода. Управление ключом осуществляется с помощью ШИМ. Ниже представлена функциональная схема повышающего преобразователя.

В категорию DC/DC‑конвертеров входят высоковольтные преобразователи. Они используются для нагрузок с малыми потребляемыми токами, которые не требуют значительной мощности источника электропитания. К ним относятся, например, счетчики радиационных излучений, ионизаторы воздуха, аноды электроннолучевых трубок в осциллографах.

Большинство современных ДС/ДС‑преобразователей имеет гальваническую развязку. В таких устройствах входные и выходные электроцепи разделены изоляционным барьером. Это решение позволяет защитить людей и подключаемую нагрузку от аварийного повышения напряжения на входе, а также улучшает помехозащищенность конвертера.

Преобразователи переменного напряжения в постоянное (выпрямители)

AC/DC‑преобразователи применяются для преобразования переменного напряжения (например, стандартного напряжения бытовых или промышленных электросетей 220/380 В) в стабилизированное постоянное напряжение. Устройства широко применяются в промышленной автоматизации, изготовлении источников питания, телекоммуникациях, на транспорте, в гальванике, энергосиловых установках, сварочных аппаратах. В зависимости от используемых силовых ключей, выпрямители бывают:

1. Тиристорными. Они состоят, как правило, из таких основных компонентов:

  • трансформатор. Необходим для понижения/повышения напряжения, а также гальванической развязки выпрямителя от электросети;
  • тиристорный мост (вентильная группа). Предназначен для преобразования переменного электротока в постоянный и регулирования (стабилизации) параметров выпрямленного тока, вне зависимости от колебаний напряжения на входе;
  • блок управления вентильной группой;
  • емкостной, индуктивный или комбинированный фильтр (LC-фильтр). Предназначен для сглаживания пульсаций выходных параметров.

2. Транзисторными. В состав таких выпрямителей входят следующие элементы:

  • входной LC-фильтр. Необходим для защиты питающей сети от помех, создаваемых выпрямителем;
  • диодный мост;
  • ВЧ-преобразователь. Предназначен для преобразования постоянного тока в высокочастотный импульсный и регулирования (стабилизации) параметров выпрямленного тока, вне зависимости от колебаний входного напряжения;
  • ВЧ-трансформатор. Предназначен для понижения/повышения напряжения импульсного тока;
  • диодный или транзисторный выпрямительный мост. Предназначен для преобразования высокочастотного импульсного тока в постоянный;
  • блок управления;
  • выходной LC-фильтр.

Преобразователи постоянного напряжения в переменное

Эти устройства называют DC/AC‑инверторами. Они могут применяться как отдельная аппаратура или входить в состав источников бесперебойного питания и систем преобразования электроэнергии. Формирование переменного напряжения осуществляется с помощью транзисторов и ШИМ. Периодическое высокочастотное открывание/закрывание транзисторов в электросхеме обеспечивает изменение направление движения тока и получение синусоиды.

Важно не только то, как работает инвертор напряжения, но и какую топологию формирования синусоидального сигнала он использует. Есть два основных варианта:

Топология «полумост» со сквозной нейтралью. Она отличается минимальным количеством силовых транзисторов и достаточно простой схемой. К недостаткам относится необходимость применения двухполярного источника электропитания, удвоенное число высоковольтных конденсаторов. Этот вариант используют обычно для не очень мощных нагрузок (0,5-1 кВт).

Мостовая топология. Наиболее распространенная схема в силовых преобразователях. Характеризуется повышенной надежностью, не требует большой входной емкости, обеспечивает минимальные пульсации на транзисторах. К недостаткам относится повышенная сложность драйверов и увеличенное число транзисторов.

Критерии выбора и расчет инвертора напряжения

Важнейшие характеристики инвертора:

  • частота преобразователя напряжения и форма напряжения. Желательно приобрести аппарат, который выдает чистый синусоидальный сигнал. К такому преобразователю можно подключать даже высокочувствительное оборудование;
  • номинальная мощность. Она должна быть выше, чем суммарная нагрузка всех подключенных потребителей;
  • максимальная пиковая мощность. Это значение определяет, какую наибольшую нагрузку выдержит устройство при подключении техники с малым значением коэффициента cos ф. К такому оборудованию относятся электродвигатели, насосы, компрессоры;
  • значение входного/выходного напряжения и силы электротока.
Читайте также:
Резные деревянные панно из спилов, веток на стену: видео-инструкция как сделать своими руками, фото и цена

Чтобы выполнить расчет необходимой мощности DC/AC преобразователя, необходимо:

  1. Сложить мощность, потребляемую подключаемым оборудованием. Ее берут из паспортных данных на технику. Например, холодильник — 200 Вт, стиральная машина — 1500 Вт, пылесос — 1000 Вт. Итого в сумме: 200 + 1500 + 1000 = 2700 Вт.
  2. Учесть пиковую нагрузку. Для этого полученную сумму умножаем на коэффициент 1,3 (для рассматриваемого примера: 2700*1,3 = 3510 Вт).
  3. Учесть коэффициент cos ф для получения результата в вольт-амперах. Его значение для разного оборудования варьируется в пределах 0,60. 0,99. Для расчета лучше принять минимальную величину. 3510/0,6 = 5850 ВА ≈ 6 кВА. Именно на это значение следует ориентироваться при выборе инвертора.

Заключение

В статье были рассмотрены основные разновидности преобразователей напряжения, особенности их работы и сферы применения. Также были приведены типовые электросхемы преобразователей напряжения и описаны критерии выбора DC/AC инверторов.

Все виды преобразователей напряжения

Наиболее распространённая схема инвертора напряжения состоит из четырех IGBT транзисторов VT1…VT4, включенных по схеме моста, и четырех обратных диодов, обозначенных VD1…VD4, параллельно соединенных с управляемыми полупроводниковыми ключами во встречном направлении. Преобразователь питает активно-индуктивную нагрузку. Именно она является самой распространенной, поэтому была взята за основу.

Входные клеммы инвертора подключаются к Uип. Если таким источником служит диодный выпрямитель, то выход его обязательно шунтируется конденсатором C.

В силовой электронике наибольшее применение нашли транзисторы с изолированным затвором IGBT (именно они показаны на схеме) и GTO, IGCT тиристоры. При оперировании меньшими мощностями вне конкуренции полевые транзисторы MOSFET.

В момент времени t1 открываются VT1 и VT4, а VT2 и VT3 – закрыты. Образуется единственный путь для протекания тока через нагрузку: «+» Uип – VT1 – нагрузка RнLн – VT4 – «-» Uип. Таким образом, на интервале времени t1 ‑ t2 создается замкнутая цепь для протекания iн в соответствующем направлении.

Режим работы схемы

Для изменения направления iн снимаются управляющие импульсы с баз VT1 и VT4 и подаются сигналы на открытие второго и третьего VT2,3. В точке t2 на оси времени t, первый и четвертый VT1,4 закрыты, а второй и третий – открыты. Однако, поскольку нагрузка активно-индуктивная, то iн не может мгновенно изменить направление на противоположное. Этому будет препятствовать энергия, запасенная на индуктивности Lн. Поэтому он будет сохранять прежнее направление до тех пор, пока не рассеется все энергия, запасенная на индуктивности в виде магнитного поля, равная Wм = (Lн∙i2)/2.

В связи с этим, на отрезке времени t2 – t3 ток будет протекать через диоды VD2 и VD3, сохраняя прежнее направление на RнLн, но пройдет в обратном направлении через Uип или конденсатор C, если источником энергии является диодный выпрямитель. Поэтому следует обязательно установить конденсатор C, если преобразователь подключен к диодному выпрямителю. Иначе прервется путь протекания iн, в результате чего возникнут сильное перенапряжение, которое может повредить изоляцию потребителя и выведет из строя полупроводниковые приборы.

В момент времени t3 вся запасенная на индуктивности энергия снизится до нуля. Начиная с момента t3 до момента t4 под действием приложенного Uип через открытые полупроводниковые ключи VT2 и VT3 будет протекать iн через LнRн уже в другую сторону.

В точке t4, расположенной на оси времени t, снимается управляющий сигнал с VT1,3, а VT1 и VT4 открываются. Однако iн продолжает протекать в ту же сторону, пока не расходуется энергия, запасенная в индуктивности. Это будет происходить на интервале времени t4 – t5.

Работа схемы

Начиная с момента t5 iн изменить направление и потечет от Uип через LнRн по пути через VT1 и VT4. Далее все процессы, протекающие в электрической цепи, будут повторяться. На LнRн форма напряжения будет прямоугольной, но ток на активно-индуктивной нагрузке будет иметь пилообразную форму за счет наличия индуктивности, которая не позволяет ему мгновенно вырасти и снизиться. Если потребитель имеет чисто активный характер (индуктивность и емкость практически равны нулю), то формы iн и uн будет в виде прямоугольников.

Поскольку VT1…VT4 попарно открывались на всей протяженности соответствующих полупериодов, то на выходе преобразователя формировалось максимально возможное uн, поэтому через LнRн протекал iн максимальной величины. Однако часто требуется обеспечить плавное нарастание мощности на потребителе, например для постепенного увеличения яркости освещения или частоты вращения вала двигателя.

Следует пояснить, что сигналы, поступающие из системы управления СУ, подаются не сразу на базы полупроводниковых ключей, а посредством драйвера. Так как современные СУ построены на безе микроконтроллеров, которые выдают маломощные сигналы, не способные открыть IGBT, то для увеличения мощности открывающего импульса применяется промежуточное звено – драйвер. Кроме того на часто драйвер выполняет множество дополнительных функций – защищает транзистор от короткого замыкания, перегрева и т.п.

Читайте также:
Применение ЖБИ панелей в строительстве

Как выбрать сварочный инвертор для дома

Само собой разумеется, что ничего такого в бытовых целях не требуется и с решением самых разнообразных задач, способен справиться относительно недорогой инвертор для ручной дуговой сварки

Тем не менее, и здесь, очень важно учитывать определенные характеристики инвертора, чтобы выбрать его, исходя из специфики сварочных работ

Поэтому, для того чтобы правильно выбрать инвертор для бытового использования, обратите внимание на следующие его характеристики:

Номинальное значение тока — данный параметр важно учитывать, зная, какой по толщине металл придется варить. Многие инверторы имеют максимальный ток в 160

А, для большинства работ со сваркой дома, его вполне будет достаточно. При этом от силы тока сварочного инвертора, напрямую зависит и допустимый диаметр используемых электродов. Чем выше ток, тем больше по диаметру электрод можно использовать для сварки толстых металлов. Для использования в бытовых условиях вполне хватит сварочного инвертора с номинальным током в 160-200 Ампер.

Чувствительность к пониженному напряжению — сварочные инверторы свалятся не только своим малым весом и небольшими габаритами, но и умением варить при пониженном напряжении в электросети. Поэтому, перед тем, как выбрать сварочный инвертор для дома, задумайтесь над тем, насколько стабильное напряжение у вас дома и не придется ли подключать инвертор к бензиновому генератору. Большинство моделей сварочных инвертором умеют работать при пониженном напряжении в 140-160 Вольт, и это очень важный момент, если в доме постоянно прыгает напряжение.

Мощность инвертора — от мощности инвертора зависит многое, но в первую очередь, сложность выполнения задач по сварке. Мощный инвертор способен справиться с более толстыми металлами, однако и нагрузку на электросеть он будет создавать, также несколько большую. Большинство бытовых инвертором для сварки имеет мощность в 4-5 кВт, и этого вполне достаточно для бытовых целей. Кроме того, сварочный инвертор небольшой мощности можно будет подключить к генератору на 2,5-3 кВт и варить электродом в 2-3 мм, без каких-либо проблем. Следует знать, что в техническом паспорте к инвертору его мощность чаще всего указывается в кВА, которые нужно перевести в кВт, для того, чтобы знать не полную мощность инвертора (кВА), а полезную (кВт).

Рабочий цикл — очень важный параметр, который указывает на то, сколько непрерывно можно варить инвертором, до тех пор, пока не сработает защита. Большинство бытовых инверторов имеют цикл непрерывной работы всего лишь 5 минут, но и этого достаточно для того, чтобы справиться с большинством задач по сварке дома. Навряд ли вы будете варить беспрерывно и более одной минуты, поскольку в любом случае, вам нужно будет отбить шлак, что-то подогнать или заменить электрод новым.

Дополнительные функции — современный сварочный инвертор оборудуется дополнительными функциями, которые позволяют без труда варить новичку-сварщику и справляться с этим очень легко. Самые распространенные функции сварочных инверторов, такие как: «Антизалипание», «Горячий старт» и «Форсаж дуги» позволят с большим комфортом использовать рассматриваемый аппарат для сварки. О том, из чего состоит сварочный инвертор, вы можете прочесть в другой статье.

Ну и, конечно же, нужно смотреть на стоимость, производителя, и гарантийный срок на сварочный инвертор, чем он будет больше, тем, конечно же, лучше. Порой нет необходимости брать чересчур дорогой инвертор, только из-за «брендового названия», здесь лучше всего искать как всегда «золотую середину».

Классификация инверторов

Инверторы могут быть очень большими и массивными, особенно если они имеют встроенные батарейные блоки, поэтому они могут работать автономно. Они также генерируют много тепла, поэтому у них большие радиаторы (металлические плавники) и часто охлаждающие вентиляторы. Самые маленькие инверторы — это более портативные коробки размером с автомобильное радио, которое вы можете подключить к гнезду прикуривателя, чтобы произвести AC для зарядки портативных компьютеров или мобильных телефонов.

Так же, как приборы различаются по мощности, которую они потребляют, инверторы различаются по мощности, которую они производят. Как правило, чтобы быть в безопасности, вам понадобится инвертор, рассчитанный на четверть выше максимальной мощности устройства, которое вы хотите использовать. Это позволяет предположить, что некоторые приборы (например, холодильники и морозильники или люминесцентные лампы) потребляют максимальную мощность при первом включении

Хотя инверторы могут обеспечивать максимальную мощность в течение коротких периодов времени, важно отметить, что они не предназначены для работы на пиковой мощности в течение длительного времени

Читайте также:
Особенности и монтаж инфракрасного стержневого теплого пола

По принципу действия инверторы делятся на:

  • Автономные.
  • Инверторы напряжения (АИН).
  • Инверторы тока (АИТ).
  • Резонансные инверторы (АИР).
  • Зависимые (инверторы, ведомые сетью).

Здоровенные приборы в наших домах, которые используют большое количество энергии (такие вещи, как электрические нагреватели, лампы накаливания, чайники или холодильники), не очень заботятся о том, какую форму волны они получают: все, что они хотят, это энергия и как можно больше. Электронные устройства, с другой стороны, намного более суетливы и предпочитают более плавный вход, который они получают от синуидальной волны.

  • Многие инверторы работают как автономные устройства с аккумулятором, которые полностью независимы от сети.
  • Другие, так называемые утилитарно-интерактивные инверторы или инверторы с привязкой к сетке, специально разработаны для подключения к сети все время. Как правило, они используются для передачи электроэнергии от чего-то вроде солнечной панели обратно в сеть с точно правильным напряжением и частотой.

Это прекрасно, если ваша главная цель — создать собственную силу. Но это не так полезно, если вы хотите иногда быть независимыми от сети, или вам нужен резервный источник питания в случае сбоя, потому что если ваше соединение с сетью опускается, и вы не производите электричество самостоятельно (например, это ночное время, и ваши солнечные панели неактивны), инвертор тоже опускается, и вы полностью без энергии, независимо от того, генерируете ли вы свою силу или нет.

По этой причине некоторые люди используют бимодальные или двунаправленные устройства, которые могут работать как в автономном, так и в сетчатом режиме (хотя и не одновременно). Поскольку у них есть дополнительные части, они, как правило, более громоздки и дороже.

Крупные коммутационные устройства для применений передачи энергии, установленные до 1970 года, преимущественно использовали ртутно-дуговые клапаны. Современные инверторы обычно являются твердотельными (статические инверторы). Современный метод проектирования включает компоненты, расположенные в конфигурации моста H. Этот дизайн также довольно популярен среди небольших потребительских устройств.

Используя трехмерную печать и новые полупроводники, исследователи из Национальной лаборатории Oak Ridge Департамента энергетики создали инвертор мощности, который мог бы сделать электромобили более легкими, более мощными и более эффективными.

Подключение

В зависимости от комплектации и оборудования можно выбрать следующие схемы подключения.

С контроллером DC-заряда

Суть схемы в подзарядке АКБ через МРРТ-контроллер. Здесь применяется преобразователь, который поддерживает передачу энергии в сеть или нагрузку, если Uакб больше установленного параметра.

Преимущество решения состоит в эффективности применения альтернативной энергии при частых включениях / выключениях.

Второй момент — возможность подключения солнечной батареи после разряда АКБ.

С преобразователем сетевого или гибридного типа

Здесь на выводах АКБ инвертора смонтирован преобразователь сетевого типа. При этом оба конвертора подключены к разным солнечным источникам питания.

Преобразователь гибридного типа поводится к фотоэлектрическому элементу для заряда АКБ, а сетевой объединяется с главным модулем солнечной батареи.

  • необходимость регулировки сетевого инвертора;
  • бесперебойность питания вне зависимости от напряжения сети;
  • заряд АКБ с выводов;
  • работа аккумуляторов по буферному принципу, что продлевает срок их действия.

Общая мощность сетевого устройства должна быть меньше мощности гибридного девайса. В таком случае проще утилизировать электричество от солнечных панелей при разрядке АКБ и выключении питания.

  1. Длина проводов для постоянного тока не должна быть больше трех метров. Если это необходимо, лучше увеличить соединение АС.
  2. Оптимальная установка инвертора — на уровне глаз. Так лучше видны данные с экрана.
  3. Устройство нельзя устанавливать в коробке, изготовленной из горючих изделий.

Если инвертор имеет мощность больше 0,5 кВт, важно обеспечить жесткость соединения между изделием и проводами. https://www.youtube.com/embed/if8Ff6kPh5U

Популярные модели

Современный рынок предлагает большой выбор гибридных инверторов.

Выделим несколько популярных моделей:

  1. Прогресс 48-6000-Hybrid — надежный инвертор для альтернативных источников питания. Работает автономно с возможностью подключения параллельно бытовой сети. Имеет мощное зарядное устройство до 80 А. Производитель — А-электроника. Напряжение на входе от 100 до 270 В, а на выходе от 38 до 67 В. КПД 92%. Предусмотрена защита выхода от перегрузки и выгода от КЗ. Имеется предохранитель в цепи АКБ. Имеется гальваническая развязка. Вес — 4,6 кВт Мощность (долговременная / пусковая) — 5 кВт.
  2. Прогресс 24-6000-Hybrid — еще ода модель нового поколения, умеющая работать параллельно с сетью и в автономном режиме. Комплектуется зарядным устройством до 100 А. Мощность устройства (долговременная и пусковая) — 4 и 6 кВт соответственно. Напряжение на входе и выходе — 100-270 В и 19-33 В. Потребляемый ток в режиме сна — 20 мА. Устройство работает с КПД в 92%. Габариты составляют 11,5х14,5х42,5 см, а вес — 4,6 кг. Предусмотрена защита выхода от КЗ и перегрузка. Стоит предохранитель в цепи АКБ на 160 А. Имеется гальваническая развязка.
  3. Прогресс 12-5000-Hybrid — качественный инвертор гибридного типа с возможностью автономной работы, в том числе параллельно с сетью. Имеет мощность 3 и 6 кВт для долговременной и пусковой характеристики. Подключается к напряжению от 100 до 270 В переменного тока. Рабочее U от 9,5 до 16 В. Потребляемый ток 20 мА. Устройство работает с КПД 92%. Способно выдерживать температурный режим от -40 до +40 градусов Цельсия. Есть защита выхода от перегруза и КЗ, а также от перезаряда аккумулятора. Размеры — 11,5х14,5х42,6 см, вес — 4,2 кг.
  4. ИС2-24-300 — продукт компании СибКонтакт. Не относиться к гибридным, но про него стоит упомянуть. Изделие рассчитано на входное напряжение от 21 до 30 В с выдачей на выходе 220 В (50 Гц). Рабочая мощность — 300 Вт, а максимальная — 60 Вт. Рабочая температура от -40 до +40 градусов Цельсия. КПД — 92%. К устройству можно подключить любое оборудование, рассчитанное на питание от бытовой сети. Имеется защита от повышения напряжения, КЗ, перегрузки и перегрева. Имеется режим энергосбережения и от полной зарядки.
  5. SILA PV 4000P — солнечный гибридный инвертор, мощностью 4000 Вт, сочетающий в себе опции контроллера заряда АКБ, инвертора и ЗУ для аккумулятора на 220 В. Работает в диапазоне напряжений от 180 до 270 В. Номинальное U — 48 В. Температурный режим — от 0 до +55 градусов Цельсия. Размеры — 46,8х29,75х12,5 см.
Читайте также:
Реле времени с задержкой выключения на 220В и их характеристики

При желании можно выбрать и другие модели — Solax X3-Hybrid-6.0-D-E, Solax X1-1.1, Solax X3 20KW, Solax X1-Hybrid-3.7-D-E, ИС2-12-300, Сибвольт 4024 и другие. Главное — внимательно подойти к изучению характеристик.

Примеры ошибок на частотном преобразователе Danfoss VLT Micro Drive FC 51: Код ошибки Описание Предупреждение Аварийный сигнал Блокировка отключения Ошибка Причина отказа 2 Ошибка “нулевого” аналогового.

Подключение трехфазного двигателя на 380 вольт Если подать в катушку переменный ток, получим переменное поле. Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике.

Параметры электродвигателя №2: потребляемый ток Для измерения тока, потребляемого электродвигателем, используются токоизмерительные клещи , измеряющие ток в цепи без ее разрыва. При использовании.

Нестабильность напряжения сети, повышенные требования к параметрам питания у ряда аппаратуры требуют применения устройств стабилизации.

Расчет и выбор аккумулятора Сила тока не должна превышать штатный и максимальный разрядный ток аккумулятора Чтобы выбрать подходящую аккумуляторную батарею нужно вычислить значения 2 параметров: мощность.

Внешний вид и конструкция УЗМ-51М, как и другие устройства модульного исполнения, крепят на стандартную DIN-рейку. Корпус реле пластмассовый, с двумя верхними и двумя нижними клеммами туннельного типа. Спереди.

Что такое инвертор, он же преобразователь напряжения с 12 на 220 Вольт?

Инвертор (в узком электротехническом понимании этого слова) – это устройство для преобразования постоянного тока в переменное с изменением величины действующего значения напряжения. В ещё более узком – преобразователь постоянного напряжения (12, 24 или 48 В) в переменное 220 В.
И наконец, в радикально узком понимании – штуковина, позволяющая запитать от автомобильного аккумулятора различные бытовые приборы, рассчитанные на сетевое питание, а короче – весьма полезный и удобный в хозяйстве прибамбас!

Схема простого преобразователя напряжения 220 В, 50 Гц

Схема, изображённая на Рис.1, а также комментарии к ней заимствованы из книги М. А. Шустова “Практическая схемотехника”, раздел – “Преобразователи напряжения”.

Рис.1 Схема простого преобразователя напряжения 220 В, 50 Гц

“Максимальная выходная мощность преобразователя – 100 Вт, КПД – до 50%.
Задающий генератор выполнен по схеме традиционного симметричного мультивибратора, выполненного на транзисторах ѴТ1 и ѴТ2 (КТ815). Выходные каскады преобразователя собраны на составных транзисторах ѴТ3 и ѴТ4 (КТ825). Эти транзисторы устанавливают без изолирующих прокладок на общий радиатор.
Устройство потребляет от аккумулятора ток до 20 А. В качестве силового использован готовый сетевой трансформатор на 100 Вт (сечение центральной части железного сердечника — около 10 см2). У него должны быть две вторичные обмотки, рассчитанные на 8В/10А каждая. Для того, чтобы частота работы задающего генератора была равна 50 Гц, подбирают номиналы резисторов R1 и R2″.
Так как мультивибратор генерирует меандр с заваленными фронтами, а мощные эмиттерные повторители повторяют эту форму, то и в нагрузке будет протекать переменный ток, напоминающий по форме синусоиду и дополнительных мер по сглаживанию не требуется.

Читайте также:
Смеситель локтевой : медицинский хирургический для раковины или умывальника с управлением, настенный и однорукояточный

Схема простого преобразователя напряжения 220 В, 50 Гц

Значительно повысить КПД инвертора можно, если применить в качестве силовых каскадов не повторители напряжения, а транзисторы, работающие в ключевом режиме.
Такая модификация преобразователя приведена на Рис.2.

Рис.2 Схема простого преобразователя напряжения с повышенным КПД

Принцип работы преобразователя такой же, как и у предыдущего устройства. Задающий генератор (Т1, Т2) формирует два пара-фазных напряжения с частотой 50 Гц. Напряжения с выходов задающего генератора подаются на два однотипных ключевых каскада (Т3, Т4), которые коммутируют напряжение на первичной обмотке трансформатора. Поскольку мультивибратор генерирует меандр с заваленными фронтами, ключевые транзисторы срабатывают с некоторой задержкой, обуславливая формирование на выходе инвертора подобие модифицированного синусоидального напряжения.
С указанными на схеме элементами выходная мощность преобразователя составляет около 200 Вт. Дальнейшего повышения КПД и увеличения мощности инвертора можно добиться простой заменой биполярных ключевых элементов на мощные MOSFET транзисторы, как это показано на Рис.2.

Принципиальная схема импульсного преобразователя напряжения +12V в ~220V

Многочисленные и довольно популярные схемы инверторов, построенные на специализированных микросхемах для импульсных источников питания (типа TL494, TL594 и др.) обладают следующими преимуществами: высоким КПД и не менее высокой стабильность частоты, мало зависящей от напряжения питания и внешних условий.
Приведём для примера подобную схему импульсного преобразователя напряжения +12V в ~220V мощностью 100W, опубликованную в журнале «Радиоконструктор» – 07 – 17.

Рис.3 Принципиальная схема импульсного преобразователя напряжения +12V в ~220V

“Эквивалентная частота генерации составляет 50 Гц и задаётся величиной сопротивления резистора R5 и ёмкостью конденсатора С5. Резистором R4 регулируется скважность выходных импульсов. Им можно регулировать выходное напряжение.
На выходах микросхемы (выводы 9 и 10) выделяются противофазные импульсы, немного задержанные относительно друг друга, чтобы не вызывать сквозного тока в схеме выходного каскада в моменты переключения. Импульсы поступают на мощные ключевые полевые транзисторы VT1 и VT2. Диоды VD2 и VD3 защищают эти транзисторы от выбросов отрицательной ЭДС на первичной обмотке импульсного трансформатора Т1.

Трансформатор Т1 – готовый низкочастотный силовой трансформатор номинальной мощностью 100W с одной первичной обмоткой на 220V и вторичной обмоткой на 18V с отводом от середины. Можно попробовать и трансформатор с вторичной обмоткой на 12V с отводом от середины или на 24V с отводом от середины. Но во втором случае, боюсь, что выходное напряжение окажется несколько ниже 220V.
Трансформатор включён «задом на перёд», то есть, его вторичная низковольтная обмотка теперь служит первичной, а высоковольтная первичная – вторичной.
Подключив нагрузку и мультиметр, резистором R4 выставить напряжение на нагрузке 220V”.

Многие схемы, построенные на TL494, TL594 и т. д., при всех своих достоинствах, часто обладают одним, но существенным недостатком. Если не позаботиться о корректной установке “мёртвого времени” ИМС (в приведённой схеме – резистором R4), то напряжения на выходе преобразователей будет иметь форму, близкую к форме меандра со всеми вытекающими отсюда последствиями. Причём, никакие дополнительные дроссели, а также конденсаторы во вторичной обмотке трансформатора – к существенному результату не приведут!

А вот уважаемый товарищ А.П. Семьян в своей книжке «500 схем для радиолюбителей» порадовал нас оригинальным схемотехническим решением с формированием модифицированного синуса посредством цифровой микросхемы 561ИЕ8 (Рис.4).

Cхема простого импульсного преобразователя напряжения на микросхеме 561ИЕ8

Рис.4 Схема простого импульсного преобразователя напряжения на микросхеме 561ИЕ8

На элементах DD1.1, DD1.2 собран задающий генератор с частотой 500 Гц. Делитель на DD2 формирует две импульсные последовательности частотой 50 Гц со сдвинутыми на 180° фазами для управления силовыми ключами VT1 и VT2 двухтактного преобразователя.
Чтобы избежать сквозных токов переключения между выключением одного ключа и включением другого существует «мёртвая зона», равная 10% длительности периода. При подаче высокого уровня (логической «1») на вход «Блокировка» оба выходных ключа запираются.
Выходная мощность преобразователя ограничена мощностью силового трансформатора Т1 и максимальным допустимым током выходных транзисторов.
Коэффициент трансформации силового трансформатора Кт = 20.

В качестве выходных транзисторов подойдут IRFZ034 (15А), IRFZ044 и RG723A (30A), IRFZ046 (50A), IRFP064 (100А). Для надёжности устройства рекомендуется иметь двойной запас по току и тройной – по напряжению. Силовые цепи должны быть по возможности короче и выполнены проводами соответствующего сечения.

Создание преобразователей с чистым 50-герцовым синусом обычно сопряжено с использованием микроконтроллерных прибамбасов, что делает рассмотрение этого вопроса (для нас доблестных электронщиков) не таким уж и простым и в рамках данной статьи – нецелесообразным.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: