Почему пропадает фаза и что делать в таком случае?

Обрыв нуля в трехфазной сети — причины и последствия

Обрыв нуля — это аварийный режим работы трехфазной электросети при котором, в результате обрыва (отгорания) нулевого рабочего провода, в случае несимметричной нагрузки, на подключенных к данной сети однофазных электроприемниках возникает напряжение значительно ниже либо наоборот значительно превышающее номинальное напряжение однофазной сети.

Последствия обрыва нуля — это вышедшее из строя электрооборудование и в первую очередь это дорогостоящие электронные приборы, такие как компьютеры, телевизоры, современные стиральные машины и т.д., которые являются наиболее чувствительными к перепадам напряжения сети, и в особенности к его повышению.

Совершенно не важно проживаете вы в частном доме или в квартире, трехфазная у вас сеть или однофазная при обрыве нуля питающей сети и при отсутствии должной защиты вы рискуете стать жертвой подобной аварии.

В данной статье мы разберемся с тем, что происходит при обрыве нуля, откуда в однофазной розетке может появиться 380 Вольт, а так же по каким причинам может произойти обрыв нуля и как от этого защититься.

2. Почему при обрыве нуля повышается напряжение?

Что бы ответить на этот вопрос разберемся с тем как устроена наша электросеть и как в нее подключаются электроприборы.

Есть два основных способа подключения электроприемников — параллельный и последовательный:

Параллельное подключение нагрузки в электросеть

На картинке выше представлено параллельное подключение двух лампочек, при таком подключении напряжение на обоих лампочках будет одинаково и равно напряжению сети, вне зависимости от количества лампочек и их мощности, в то время как ток сети (I1) будет равен сумме токов I2 — который проходит через первую лампочку и I3 который проходит через вторую лампочку.

Именно по такой схеме подключается все электрооборудование в квартирах и частных домах.

Рассчитать общий ток при параллельном подключении можно по формуле:

I=U/R

где: U — напряжение сети, Вольт; R — сопротивление сети, Ом.

Из этой формулы видно, что ток в сети обратно пропорционален сопротивлению, т.е. чем выше сопротивление тем ниже ток и наоборот.

Каждый электрический прибор будь то простая лампочка или микроволновая печь имеет свое электрическое сопротивление, причем чем мощнее прибор тем меньше его сопротивление.

Общее сопротивление сети при параллельном подключении определяется по формуле:

  • При подключении двух резисторов:
  • При подключении трех и более резисторов:

где: R1,R2,Rn — сопротивления отдельно взятых электрических приборов включенных в сеть.

Представим, что мы параллельно включили в сеть 2 лампочки: одна лампочка мощностью 75 Ватт сопротивление которой R1= 600 Ом, а вторая — 150 Ватт с сопротивлением R2= 300 Ом, тогда общее сопротивление сети будет равно:

Rсети=(600*300)/(600+300)=200 Ом

А теперь добавим в нашу сеть третью лампочку мощностью 75 Ватт с сопротивлением R3= 600 Ом, тогда:

1/Rсети=1/600+1/300+1/600 ➜ 1/Rсети=0,0017+0,0033+0,0017,

отсюда находим общее сопротивление сети:

Rсети=1/(0,0017+0,0033+0,0017)=149 Ом

Как видно из данного расчета при подключении третьей лампочки общее сопротивление сети уменьшилось.

ВЫВОД №1: Чем больше в сеть параллельно подключено электроприемников тем ниже будет ее общее сопротивление.

Последовательное подключение нагрузки в электросеть

При последовательном подключении ток протекающий в цепи имеет одинаковую величину на всем ее протяжении (т.е. через обе лампочки протекает одинаковый ток вне зависимости от их мощности)который рассчитывается по той же формуле, что и при параллельном подключении:

Однако общее сопротивление сети при последовательном подключении определяется как сумма сопротивлений всех подключенных электроприемников:

где: R1*R2*Rn — сопротивления отдельно взятых электрических приборов включенных в сеть.

Напряжение сети при последовательном подключении в нее электроприборов разделяется между этими электроприборами пропорционально их сопротивлению. Рассчитать напряжение на каждом приборе можно по следующей формуле:

Uэлектроприемника = Iсети*Rэлектроприемника

Как видно из этой формулы, напряжение на электроприемнике прямо пропорционально его сопротивлению.

Для наглядности произведем расчет напряжения на двух подключенных последовательно в сеть 220 Вольт лампочках мощностью 75 Ватт (сопротивление одной лампочки R=600 Ом) (рис. 1)

В этом случае общее сопротивление сети будет равно:

Rсети= Rлампочки №1 + Rлампочки №2=600+600=1200 Ом

Ток сети будет равен:

Тогда напряжение на лампочке будет равно:

Uлампочки = Iсети*Rлампочки=0,183*600=110 Вольт

Так как сопротивление (мощность) обоих лампочек одинаково напряжение сети разделится между ними поровну.

Таким образом выполняется подключение лампочек в гирляндах, например, если взять десятивольтовые лампочки одинаковой мощности то подключив 22 таких лампочки последовательно в сеть 220 Вольт на каждой лампочке будет как раз 10 Вольт (220Вольт/22лампочки=10Вольт на каждую лампочку), однако если перегорит одна лампочка цепь разорвется и вся гирлянда погаснет.

Теперь представим, что мы заменили одну из лампочек на лампочку мощностью 150 Ватт, сопротивление которой соответственно будет Rлампочки №2 =300 Ом (рис. 2)

Тогда общее сопротивление сети будет равно:

Читайте также:
Ремонт ванной комнаты маленького размера

Rсети= Rлампочки №1 + Rлампочки №2=600+300=900 Ом

Ток сети будет равен:

Тогда напряжение на лампочке №1 (75 Ватт) будет равно:

Uлампочки №1 = Iсети*Rлампочки №1=0,2444*600=147 Вольт

А напряжение на лампочке №2 (150 Ватт) составит:

Uлампочки №2 = Iсети*Rлампочки №2=0,2444*300=73 Вольта

То есть менее мощная лампочка будет получать большее напряжение и соответственно ярче гореть.

ВЫВОД №2: При последовательном подключении в сеть электроприборов на менее мощные электроприборы «выделяется» большее напряжение чем на приборы большей мощности.

Ну и наконец разберемся почему при обрыве нуля в вашей розетке может появиться 380 Вольт, для этого представим обычную схему подключения квартир в многоквартирном жилом доме (аналогичным образом подключаются так же и частные жилые дома к линиям электропередач):

Схема подключения однофазных потребителей в трехфазной системе

На схеме представлено подключение трех квартир, т.к. нагрузка по фазам должна разделяться равномерно все квартиры подключены на разные фазы, при этом во всех трех квартирах общий ноль.

В трехфазной сети напряжение между фазами составляет 380 Вольт, а напряжение между фазой и нулем — 220 Вольт, соответственно при данной схеме в каждой из квартир напряжение сети составляет 220 Вольт и в эту сеть параллельно подключаются электроприборы, ток при этом протекает от фазы к нулю.

Теперь посмотрим что происходит в электросети при обрыве нуля (для большей наглядности и упрощения расчетов представим, что жильцы квартиры №3 уехали в отпуск предусмотрительно отключив все электроприборы в квартире):

Обрыв нуля в трехфазной сети, схема

На приведенной выше схеме видно, что при обрыве нуля первая и вторая квартиры оказались подключены последовательно в сеть 380 Вольт, ток в этом случае протекает уже не от фазы к нулю, а от фазы к фазе.

Как уже было сказано выше, при последовательном подключении в сеть электроприборов, на менее мощные электроприборы выделяется большее напряжение (вывод №2). Если бы общая мощность включенных в сеть электроприборов в квартире №1 была равна мощности включенных в сеть приборов в квартире №2, то напряжение между квартирами поделилось бы поровну, т.е. по 190 Вольт на квартиру, однако на практике такого как правило не бывает.

В нашем случае у жильцов в квартире №1 в сеть включены только компьютер, телевизор и одна лампочка общей мощностью 475 Ватт в то время как в квартире №2 в сеть включены: стиральная машина, электропечь, и 2 лампочки общей мощностью 3950 Ватт следовательно, т.к. общая мощность квартиры №1 значительно ниже, напряжение в электросети квартиры №1 будет намного выше.

Произведя расчет можно определить, что напряжение в электросети квартиры №2 составит 40 Вольт, при таком напряжении электроприборы в квартире №2 перестанут работать, нити накала в лампочках будут едва раскалены, в то же время напряжение сети в квартире №1 составит 340 Вольт, при таком высоком напряжении электроприборы в квартире №1 начнут выходить из строя, в первую очередь выйдут из строя наиболее чувствительные к перепадам напряжения сети электронные приборы, т.е. телевизор и компьютер, причем после их поломки общая мощность квартиры №1 уменьшится, а напряжение сети при этом соответственно будет увеличиваться пока все включенное в сеть электрооборудование в квартире №1 не»сгорит»:

Последствия обрыва нуля

После выхода из строя последнего электроприбора в квартире №1 электрическая цепь будет разорвана (ток перестанет протекать), при этом напряжение в электросети квартиры №2 станет равным нулю, а замерив напряжение в розетке квартиры №1 мы увидим 380Вольт.

Причины обрыва нуля.

Можно выделить несколько причин обрыва нуля:

1) Некачественное и не своевременное техническое обслуживание электрощитков (либо его полное отсутствие). Данная проблема особенно остро стоит в многоквартирных жилых домах.

Периодическое техническое обслуживание — залог безаварийной работы электрооборудования. К сожалению эксплуатирующие организации (ЖКХ) зачастую пренебрегают этим важным принципом и их электрики заглядывают в этажные электрощитки только после того как случается очередная авария.

Пример отгорания нуля от нулевой шинки в результате плохо зажатого контактного соединения:

отгорание нуля в следствие плохого контакта

2) Несимметричное распределение нагрузки.

Как уже было написано выше, нагрузка по фазам должна распределяться как можно более равномерно (симметрично).

Симметричное и несимметричное распределение нагрузки в трехфазной сети

Как видно из приведенных выше схем, при симметричной нагрузке (когда подключенная мощность на всех трех фазах одинакова) токи взаимоуравновешиваются, в результате ток в нулевом проводе отсутствует, однако при несимметричной нагрузке на фазах в нулевом проводнике протекает так называемый ток уравнивания компенсирующий неравномерность нагрузки, причем чем выше данная несимметрия, тем больше величина тока уравнивания и следовательно выше риск отгорания нуля.

3) Старая электропроводка. Если вам не посчастливилось жить в новостройке, то вполне возможно, что ваш дом проектировался лет 30-40 назад, когда нагрузка среднестатистической квартиры представляла собой пару лампочек и одно радио, в наше время в каждой квартире есть множество энергоемкого оборудования такого как СВЧ печи, электрочайники, электрические печи и т.д., но на такие нагрузки старая электропроводка конечно же не рассчитывалась.

Читайте также:
Свойства и преимущества композитных алюминиевых панелей: сфера применения фасадного материала

Защита от обрыва нуля

Есть два основных способа защиты от обрыва нуля: повторное заземление нулевого проводника и установка реле напряжения:

1) Повторное заземление нуля — такой способ защиты подходит для частных жилых домов заземление которых выполняется по системе TN-C-S, при этом во вводном электрощитке дома к нулевому проводнику подключается контур заземления:

Повторное заземление как защита от обрыва нуля

Как видно на схеме, при обрыве (отгорании) нуля, ток уравнивания продолжает протекать к контуру заземления, благодаря чему фазное напряжение сохраняется на уровне 220 Вольт. Подробнее о том как выполнить повторное заземление читайте статью: Заземление в частном доме.

2) Установка реле напряжения — данный способ применяется для защиты от обрыва нуля электросети квартир в многоквартирных жилых домах, а так же для защиты электросети частных жилых домов с заземлением выполненным по системе TT, либо вовсе не имеющих контура заземления.

Установка реле напряжения для защиты от обрыва нуля

Реле напряжения — это прибор контролирующий уровень напряжения электросети, в случае повышения или снижения его до недопустимого уровня реле напряжения отключает электросеть до того момента, как напряжение сети не вернется в норму.

Подробнее читайте статью реле напряжения.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Почему пропадает фаза?

Подавляющее большинство электрических аварий случается в моменты активного использования электроприборов, особенно при подключении новой техники с высокой потребляемой мощностью. Тем не менее, бывает и так, что жильцы обнаруживают неисправность при отсутствии каких-либо к тому предпосылок: свет во всём доме просто не включается, а розетки оказываются обесточены. Что характерно, при этом нигде нет признаков возгорания, а защитная автоматика, как ей и положено,пребывает во включённом положении. В ходе последующего анализа проводки выясняется, что в питающей цепи отсутствует фаза или ноль, однако где и как произошёл обрыв, остаётся загадкой. Сегодня мы поговорим о возможных причинах такой неисправности, а также способах её устранения в различных случаях.

В отличие от многих других ситуаций, первопричина сложившихся обстоятельств совершенно ясна – произошёл разрыв цепи. Однако проявление этого способно выглядеть по-разному: физический разрыв магистрального кабеля или провода, отсутствие контакта в клемме и пр. Может показаться, что в случае отсутствия фазы только на цепи питания светильников (когда контуры розеток не затронуты неисправностью), поиск места разрыва будет проще, однако в действительности это неправда. Порой локальные электроаварии оказываются гораздо большей головоломкой, чем повреждение магистральных питающих линий.

Прозвонка фазы в розетке

Диагностика проблемы

В большинстве случаев отсутствие фазы обнаруживается довольно быстро. Если потребитель пытается включить люстру в комнате, он обычно думает, что перегорела лампочка, но эту догадку легко проверить, поставив лампу в другой патрон или просто пощёлкав выключателями от других светильников в доме. При подключении техники зачастую случается немного иначе: подключив устройство в несколько розеток, потребители обычно считают, что сломано именно оно, поскольку мы все привыкли к стабильности работы питающих контуров. Сущность поломки обнаруживается немного позже, когда оказывается, что «сломались» сразу все электрозависимые приборы. Усугубляется ситуация часто тогда, когда питание осветительных контуров не повреждено, и потребители недоумевают, что же именно в их доме перестало работать.

Вначале рассмотрим случай, когда света в жилище нет, но розетки работают исправно. Для диагностики ситуации можно использовать обычную индикаторную отвёртку, при помощи которой проверяется напряжение в патроне любого стационарного светильника. Делать это необходимо с осторожностью, чтобы случайно не привести к короткому замыканию. Если результаты проверки подтверждают, что питание к этому месту не подводится, необходимо проверить соединения по восходящей иерархии. В первую очередь осматривается место подключение обеих жил к самому патрону – возможно, просто ослабло резьбовое крепление и решением проблемы будет затягивание прижимного винта. Если всё в порядке, необходимо отсоединить проводники от патрона и прозвонить их по отдельности, дабы понять, идёт ли ток по ним. Затем внимание переключают на клеммник, который соединяет светильник или люстру с линией питания, проложенной в стене – возможно, проблема в нём. Здесь опять же может встретиться плохой прижим жилы или оплавление каких-либо деталей, препятствующих прохождению тока.

Проверив участок внутри светильника и вблизи его, следует переходить к другим электроузлам. Для того, чтобы убедиться в целостности проводников, питающих прибор, понадобится специальная прозвонка. Один её щуп должен касаться выхода жилы в распределительной коробке или монтажной чашке выключателя, а второй – непосредственно контакта в патроне. Весьма нередко обнаруживается, что виновником неисправности является именно перебитый провод. Порой само повреждение могло случиться довольно давно, но окончательный разрыв произошёл именно сегодня. Если же потребитель знает, что на днях производил в доме какие-то мелкие работы (вешал зеркало, картину или книжную полку), в первую очередь, следует прозвонить тестовой отвёрткой области возле этих новых креплений. Вполне возможно, что отсутствие электромагнитных наводок с одной стороны расскажет о первопричине неисправности конкретной электроточки.

Читайте также:
Оборудование для водяного тёплого пола

В случае подтверждённой целостности проводника необходимо изучить крепление жил к клеммам выключателя. Порой неисправность не видна невооружённым глазом: механизм не имеет оплавления, щёлкает с обычным звуком и не нагревается при работе, из-за чего кажется, что он исправен. Но если его разобрать, окажется, что проблема всё-таки крылась где-то внутри него. Для диагностики неисправности можно пойти длинным путём: взять прозвонку и последовательно проверять одно звено изделия за другим, пока место поломки не будет локализовано. Однако часто используется более быстрый и радикальный способ: необходимо взять заведомо исправную клеммную колодку или самозажимной клеммник и соединить жилы напрямую, после чего подать на щитке ранее отключённое питание. Если свет загорится – неисправность совершенно точно была в выключателе, а потому вместо длительных манипуляций с ним и поиска конкретного места поломки достаточно будет просто приобрести новый элемент электрофурнитуры и установить его на своё место.

Более редкая неисправность – когда все элементы цепи кажутся мастеру исправными, а фаза пропадает именно в момент включения лампы. Причиной тому может быть как утечка тока в цепи где-нибудь на участке проводки в стене, так и короткое замыкание, однако в последнем случае на неисправность всё же должен реагировать автоматический выключатель во вводном щитке. В случае, когда питание не доходит даже на выключатель, необходимо продолжить обследование цепи дальше: изучить надёжность коммутации жил внутри распределительной коробки, а также между ней и другой коробкой на питающей магистрали или между ней и непосредственно квартирным щитком.

Демонтаж розетки

Если же отсутствие электропитания обнаружено в розетке, то здесь может иметь место большее разнообразие вариантов неисправности. Для начала, безусловно, необходимо тщательно изучить сам механизм – как визуально, так и при помощи прозвонки. Особенное внимание необходимо уделить присоединительным клеммникам – винтовые соединения и зажимы всегда являются наиболее уязвимым местом электрофурнитуры. В случае, если становится ясно, что дело не в механизме розетке, следует вспомнить, по какой схеме подключено всё оборудование – шлейфом или звездой. Даже если информации об этом у Вас нет, косвенное заключение можно сделать по тому, работают ли другие розетки в помещении. Зачастую при подключении шлейфом не будут работать сразу несколько из них, а при коммутации звездой неисправность может локализоваться в пределах одного электроузла.

Поясним: под шлейфом понимается такой способ соединения электроточек, при котором каждая последующая отводится от предыдущей последовательно, а при подключении звездой каждый узел напрямую связан отдельной линией с распредкоробкой или вводным щитком. Легко понять, что в первом случае повреждение любого промежуточного звена с высокой долей вероятности способно затронуть и последующие, а при независимой коммутации вывести из строя все электроточки сразу может только поломка в их общем центре.

Имея дело с розетками с заземлением, не забывайте, что разрыв фазной жилы мог спровоцировать перетекание тока в третий провод. Таким образом, существует вероятность, что фаза всё же присутствует в цепи, просто уходит не по тому проводу, а потому при прозвонке жил в розетке не стоит ограничиваться проверкой только основной пары проводников. То, что защитные автоматы не сработали, ещё не означает полное отсутствие фазы в питающем контуре. Кроме того, всегда необходимо принимать во внимание возможный неграмотный электромонтаж. Существует вероятность, что коммутация жил производилась не квалифицированным электриком, а человеком, мало сведущим в маркировке проводников, из-за чего вся схема неверно подключена к розеткам и вводному щитку.

Если Вы живёте в многоквартирном доме, вполне вероятно, что отключение электричества было централизованным – запланированным или в результате аварии в подъездном щитке. Не имея поводов думать, что неисправность локализуется в пределах Вашей квартиры, поинтересуйтесь ситуацией у соседей. Зачастую причина кроется в отгорании жилы в общем распределительном шкафу или состоит в перекосе фаз, спровоцированном перегрузкой одной из них. В подобной ситуации можно сделать только следующее: позвонить в ЖЭК или другую управляющую организацию, чтобы их специалисты устранили последствия неисправности.

В частных домах около трети всех электроаварий происходят в пределах вводного щитка. Первопричиной может стать либо неграмотный ввод питания в дом, либо неверное распределение мощностной нагрузки по трём фазам, либо просто неаккуратный монтаж. Вместе с тем, в частном секторе или на даче обычно проще диагностируются неполадки. Зачастую здесь в домашнем щитке гораздо больше отдельных защитных автоматов, обслуживающих небольшие участки цепи (конкретный этаж, комнату, хозпостройку, прибор, тип потребителей и пр.). Увидев, какой из них отключён, можно понять, в каких рамках локализуется проблема. Если же автоматика осталась включённой, можно понять, что разрыв фазы произошёл где-то раньше, в том числе, и вне границ участка.

Читайте также:
Мраморная штукатурка Байрамикс - состав, расход, нанесение

Проверка защитной автоматики

Отдельно следует рассказать и об особенностях, которые могут повлиять на общую картину при диагностике неисправностей. Так, если в жилище наблюдается повышенная влажность, существует вероятность существенной утечки тока. Начинаться она может не только от участка питающего провода с перебитой изоляцией, но и от любого подрозетника, где влага попала на контакты. Если жилище было затоплено сверху, вполне возможно, что фазная жила напрямую соединена с огромным влажным пятном, через него с арматурой здания, а затем – с землёй. В результате сформировалось мощное непреднамеренное заземление, из-за которого приходящий ток попросту уходит в землю. В подобных условиях бытовая техника работать не будет – в силу недостаточного напряжения, но лампочка всё же может тускло светиться. Ситуации такого рода встречаются нечасто, но могут иметь место в частном секторе в период весенней оттепели или в многоквартирном доме после затопления соседями.

Хотим обратить внимание читателей, что проверка наличия фазы на проводе или целостности проводки (тем более, скрытой), не должна производиться с использованием одной лишь индикаторной отвёртки. В ряде случаев её показания могут быть недостаточно точны или вовсе некорректны. При обрыве цепи вокруг места разрыва всё ещё сохраняется электромагнитное поле, которое даёт ошибочную информацию о наличии тока на участке, а особенно, возле электрофурнитуры. Ошибка индикации также может возникнуть в случае наличия активной нагрузки или подключённого бытового прибора. Накопленный в конденсаторах устройства заряд может длительное время давать малый «обратный ток» к месту разрыва, обеспечивая в нём электромагнитное поле. Чтобы избежать недоразумений и переделок, а также сэкономить время, индикаторную отвёртку следует использовать только для первичной, грубой оценки аварийной ситуации, а поиск неисправности производить при помощи фабричного пробника-прозвонки.

Профессиональные электрики говорят, что наиболее распространены всего две причины пропадания фазы. Первая заключается в том, что винтовой прижим в механизме розетки или выключателя ослабевает, жила выпадает и ток попросту не проходит. Вполне естественно, что защитная автоматика на такую ситуацию не реагирует. Устраняется эта неисправность очень быстро и не требует особых навыков от мастера. Вторая причина состоит в некорректной прокладке проводов. Розетки нередко монтируются цепочкой – последовательно одна за другой, в целях экономии. В моменты перегруза проводка отгорает или оплавляет изоляцию – причём происходить это может как в подрозетнике, так и в стене. Поиск такой неисправности гораздо дольше, а стоимость её устранения – выше. Именно потому специалисты рекомендуют придерживаться общепринятых правил при обустройстве проводки в своём доме.

Пропала одна фаза из трех что делать?

Принципиально важно, что обрыв нуля может быть в трехфазной, а может быть в однофазной сетях.

Там происходят совершенно разные процессы, подробно расскажу ниже. Если коротко, что при этом происходит:

При обрыве нуля в трехфазной сети появляется перекос фаз, что может привести к тому, что напряжение в квартирной розетке возрастёт до 380 В! Для человека, если правильно выполнено заземление, такая авария не опасна. А вот для наших электроприборов – последствия могут быть очень печальными! А также и для нашего жилища, поскольку может произойти пожар.

Местом обрыва нуля может быть этажный щиток, тогда в зоне риска находятся только квартиры на одной лестничной площадке. А может – вводное распределительное устройство (РУ) многоэтажного дома. Например, такое:

Вводное распределительное устройство (РУ) в подвале многоэтажного дома – в плохом состоянии

При обрыве нуля в однофазной сети последствия не такие печальные – напряжение в розетке будет нулевым, и электроприборы просто не будут работать. Однако вся электросеть (а при неправильно выполненном заземлении, и корпуса электроприборов!) будет находиться под потенциалом 220 В!

Для начала, чтобы нагнать страха –

Последствия обрыва нуля в трехфазной сети

Расскажу случаи из жизни.

  1. Электрики ремонтировали ввод в подъезд. И во время ремонта на несколько секунд был отключен рабочий ноль. Произошло очень неприятное: вернувшись домой вечером, люди обнаружили, что у них погорели телевизоры, холодильники, зарядки, и т.п. – то, что у нас постоянно включено в розетки. Хорошо, что ещё не произошел пожар.
  2. Пришёл по вызову, жалоба – плавает напряжение. Меряю напряжение (всё выключено) – почти 300 вольт. Затем при включении лампы накаливания напряжение падает до 70В… Оказалось, в этажном щитке выгорел болт, на который приходит ноль. Произошел обрыв нуля, перекос фаз, напряжения пошли вразнос. Заменил болт, восстановил контакт, напряжение нормализовалось.
Читайте также:
Скарификаторы : что это такое и чем отличаются от аэраторов для газона? Ручные и бензиновые модели. Как ими пользоваться?

Болт нуля. Ржавый, периодически не контачит. Если его менять без отключения, 100% в подъезде погорит техника!

Статья, как я менял там электрощиток – тут.

Отгорание нуля от нулевой шины

Нулевой провод отгорел от второго болта. Видно, как он отвалился под натяжением. Прежде, чем отвалиться, он ПОЧТИ переплавил изоляцию фазных проводов (вертикальные, красный и белый).

Сервер ещё не включали, возможно, интеллектуальный ущерб будет больше…

На месте этой трагедии я установил трехфазное реле напряжения Барьер, читайте статью по ссылке.

Как видно, такие проблемы происходят из-за неправильных действий “электриков” либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.

В этой статье подробно расскажу, почему такое бывает и как с этим бороться.

Обрыв нуля во входном щитке дома или квартиры.

Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе.

Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара

, которое постепенно переходит в обрыв.

При отсутствии нуля все электрические приборы в доме работать не будут. Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания

бытовой техники или
нить накала
лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине.

Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине.

Формирование однофазной и трехфазной сетей и обрыв нуля

Как известно, мощные потребители (в данном случае – многоквартирные дома) питаются от трехфазной сети, в которой есть три фазы и ноль. Про эту систему я уже писал подробно в статье про отличия трехфазного питания от однофазного, вот картинка оттуда:

Напряжения в трёхфазной системе

Рассмотрим этот вопрос ещё раз, только с другой стороны.

Вот как выглядит упрощенно схема подвода питания в этажный щиток:

Система питания, без обрыва нуля. Резисторами обозначены условно три квартиры.

Фазные провода L1, L2, L3, на которых присутствует напряжение 220В по отношению к нейтральному проводу N, обозначены красным цветом, поскольку они представляют опасность. Заземление РЕ показано внизу, его провод соединяется в распределительном устройстве на вводе в здание с нейтралью.

Подробнее – ещё раз призываю ознакомиться с моей статьёй про системы заземления, ссылка в начале.

Что делать, если у вас постоянно пропадает фаза?

Эту статью я специально подготовил для конкурса и хочу предложить свое решение поставленной задачи. Идей у меня возникло несколько, но отдал предпочтение самой бюджетной и самой безопасной, поскольку каждый любит считать потраченные деньги.

Условие конкурса: необходимо предоставить электрическую схему решения проблемы пропадания одной из фаз. Загородный дом имеет трехфазный ввод мощностью 15кВт. Периодически отпадает одна из фаз. Все нагрузки однофазные. Мощность постоянно работающего оборудования около 8кВт.

Первым делом необходимо разделить все нагрузки на две группы: приоритетные и неприоритетные. Поскольку мощность электроприемников неизвестна, то будем считать, что мощность единичных приборов не превышает 5кВт. Из всех электроприборов выделяем не менее 5кВт, без которых можно обойтись в трудную минуту. Это у нас будет неприоритетная нагрузка. Всю остальную (приоритетную) нагрузку равномерно разбиваем на две группы.

Вот так будет выглядеть электрическая схема загородного дома, с отключением неприоритетной нагрузки.

Схема отключения неприоритетной нагрузки

Схема отключения неприоритетной нагрузки

На вводе установлен трехфазный модульный выключатель нагрузки на 63А, затем электрический счетчик, вводной трехфазный автомат или дифавтомат (32-40А, 300мА). После защитного аппарата устанавливаем трехфазный пакетный переключатель на 3 направления ПП3-40Н3. Фазы «А», «В» и «С» подключаем согласно схемы.

Возможны 4 варианта работы схемы:

1 Нормальный режим.

Присутствую три фазы. Переключатель установлен в левое положение.

2 Пропала фаза «А».

Переключатель устанавливаем в среднее положение. Приоритетная нагрузка N1 подключается к фазе «С». Неприоритетная нагрузка фазы «С» отключается.

Читайте также:
Проект каркасного гаража

3 Пропала фаза «В».

Переключатель устанавливаем в правое положение. Приоритетная нагрузка N2 подключается к фазе «С». Неприоритетная нагрузка фазы «С» отключается.

4 Пропала фаза «С».

Переключатель остается в левом положении. Неприоритетная нагрузка фазы «С» отключена.

Для сигнализации на щитке устанавливаем 3 сигнальные лампы, по которым будем знать, в какой фазе пропало напряжение. Рукоятка пакетного переключателя выведена наружу щита и не требует его открытия для выполнения коммутационных операций.

Стоимость данного решения около 30$, а главное все просто и безопасно.

Зачем ставить дорогие генераторы, если можно решить данную проблему достаточно просто.

Советую почитать:

Схема управления противопожарными и дымовыми клапанами

Схемы управления электромагнитными пускателями (контакторами)

Модуль управления МИРТ-232

Управление наружным освещением

К чему приводит отгорание нуля в трехфазной сети

Что изменится, если произойдёт обрыв нулевого провода N ДО места соединения нулевых проводов в одной точке? Будет обрыв нуля в трехфазной сети:

Обрыв нуля в трехфазной сети

Если смотреть по схеме, правее места обрыва напряжение теперь будет не нулевым, а “гулять” в произвольных пределах.

Что будет, если ноль отсоединить (случайно или намеренно)? Какие напряжения будут подаваться потребителям вместо 220В? Это как повезёт.

Картинка в другом виде, возможно, так будет легче понять:

Перекос фаз в результате обрыва нуля.

Потребители условно показаны в виде сопротивлений R1, R2, R3. Напряжения, указанные в предыдущем рисунке, как ~220B, обозначены как ~0…380B. Объясняю, почему.

Итак, что будет, если ноль пропадёт (крест в нижнем правом углу)? В идеальном случае, когда электрическое сопротивление всех потребителей одинаково, ничего вообще не изменится. То есть, перекоса фаз не будет. Так происходит в случае включения трехфазных потребителей, например, электродвигателей или мощных калориферов.

Но в реале так никогда не бывает. В одной квартире никого нет, и включен только телевизор в дежурном режиме и зарядка телефона. А соседи по площадке устроили стирку, включили сплит-систему и электрический чайник. И вот -БАХ!- отгорает ноль.

Начинается перекос фаз. А насколько он зверский, зависит от реальной ситуации.

У соседей, которые дома, чайник перестанет греть, стиралка и сплит потухнут, напряжение уменьшится до 50…100В. Поскольку “сопротивление” этих соседей гораздо ниже, чем тех у тех, которых нет дома. И вот, эти люди спокойно работают на работе, а в это время в пустой квартире у них дымятся телевизор и китайская зарядка. Потому, что напряжение в розетках подскочило до 300…350В.

Это реальные факты и цифры, такое иногда бывает, состояние электрических щитков на лестничных площадках часто бывает аварийным. Даже, когда в доме проводится капитальный ремонт, щитки не трогают, поскольку менять электрику гораздо сложнее, чем покрасить дом и вставить новые окна.

Расследовать такое возгорание надо не с вызова экстрасенсов (мало ли, полтергейст со спичками играется;) ), а с вызова электрика.

Допустимый перекос фаз, причины возникновения и способы устранения

Это явление, возникающее в трехфазных четырех- и пятипроводных электрических сетях с глухозаземленной нейтралью. Данное состояние сети отличается несимметрией токов и напряжений с разными амплитудами напряжений углами между ними.

Для лучшего понимания и большей наглядности процесса предлагаем сравнить векторные диаграммы напряжений трехфазных сетей. Диаграмма 1 отличается идеальной взаимосвязью линейных и фазных напряжений, на диаграмме 2 хорошо видна несимметрия напряжений сети, т. е. имеет место перекос фаз.

Причины возникновения

В большинстве случаев к этому аварийному режиму приводит неравномерное распределения нагрузки – когда одна или две фазы перегружены. В этом случае высокие токи потребления на них приводят к неизбежному увеличению напряжения на других фазах.

Нередко, причиной несимметрии напряжения сети является неполнофазный режим, опасный не только для нагрузок с питающим напряжением 220 В, но и для трехфазного оборудования. Так, отсутствие одной фазы в линии может привести к возрастанию токов в остальных.

Обрыв нулевого провода. Режим работы линии при отсутствии рабочего нуля (N) можно отнести к разряду неполнофазных. Нарушение соотношений токов нагрузки на в таких случаях неизбежно вызывает изменение фазных напряжений (Uф). Отклонения напряжений зависит от соотношения мощностей нагрузки по фазам. В некоторых случаях Uф может достигать линейных значений (380 В).

Замыкание одной из фаз с рабочей нейтралью (“нулем”) и несработка по каким-либо причинам автомата защиты (неисправность, большая длина участка линии между местом КЗ и автоматом и пр.). В этом случае также происходит увеличение Uф на других проводниках.

Способы устранения

Несомненно, лучшим способом предотвращения несимметрии напряжения является планирование равномерного распределения предполагаемой нагрузки по фазам сети еще на стадии проектирования электроустановки.

Для устранения возникшей несимметрии напряжения в ходе эксплуатации электрической сети производят замеры токов по фазам и перераспределением нагрузок (переключение с более загруженных на менее нагруженные фазы) добиваются равных токов потребления.

Читайте также:
Надежный вариант крыши для частного дома

В быту для обеспечения допустимого напряжения питания отдельных приборов или их группы нередко используют однофазные стабилизаторы напряжения, в трехфазных сетях – соответственно, трехфазные устройства.

Однако, следует учитывать, что выравнивание значения Uф до допустимого с использованием трехфазного стабилизатора неизбежно сопровождается отклонением от нормы на других фазах.

Таким образом, можно говорить об эффективности его использования для предотвращения отклонения напряжения на одной (контролируемой) фазе, но его отклонение от нормы на других может стать вторичной причиной возникновения несимметрии напряжении.

Допустимый перекос фаз

Главным действующим документом, определяющим качество электроэнергии и регламентирующим нормы несимметрии напряжений является ГОСТ 13109-97 (п.п 5.5). Допустимое отклонение соотношений нагрузок, согласно требований СП 31-110 (9.5) – 15% в панелях ВРУ и 30% в распредщитах.

Сергей Никитин.

Обрыв нуля в однофазной сети

Тут картина будет следующей:

Обрыв нуля в однофазной сети

Для нагрузки, которая работает на других фазах, вообще ничего не изменится. Это всё равно, как если в своей квартире выключить вводные автоматы – соседям будет по барабану.

Но если обрыв произошел, например, в щитке, то вся квартира, в том числе и оборванный конец нулевого провода, окажется под напряжением 220В!

Обрыв (отгорание) бывает вот из-за таких ржавых болтов, как вверху этого фото:

Плохой ноль. Пропадание нуля в квартире

Повторюсь – если заземление сделано правильно, либо его вообще нет – эта авария ничем не опасна. Ну и, конечно, не нужно трогать провода, не дожидаясь электрика – все они под смертельным потенциалом!

Почему пропадает фаза и что делать в этом случае

Представьте, что вы пришли домой и включили свет — лампа не зажглась, после вы обнаружили, что и в розетке нет напряжения, при этом автоматы или пробки целы и включены. Дальнейший осмотр может показать, что пропала фаза или ноль в цепи. В этой статье мы рассмотрим почему это может произойти и что делать, если нет фазы на выключателе, в розетке либо на люстре.

Причины отсутствия фазы

Сразу стоит сказать, что фаза пропадает по одной единственной причине — нет контакта. При этом неважно — оборван кабель или разомкнут разъединитель на трансформаторной подстанции. При этом все сказано и для трёхфазной и для однофазной сети.

Также не все знают, что однофазная сеть 220В является одной из фаз трёхфазной сети с линейным напряжением 380В, а между фазой и нулем в этом случае получается 220В. Давайте рассмотрим, что делать если пропала фаза на примере разных ситуаций.

Не работает освещение

Если нет света, но работают розетки, первым делом проверьте наличие напряжения в патроне на люстре. При этом проверить наличие фазы можно индикаторной отверткой, но будьте внимательны — велика вероятность сделать КЗ. О том, как пользоваться индикаторной отверткой, мы рассказали в отдельной статье.

Проверка подключения патрона

Если там ничего нет, возможно проблема в подключении проводов к патрону, если и с этим всё в порядке — тогда, скорее всего, пропала фаза в выключателе или распределительной коробке.

Плохое состояние распределительной коробки

Такое часто происходит, когда контакты выключателя вроде бы замыкаются, но соединения между ними нет, а также если провода были плохо зажаты в клеммнике выключателя. Для проверки выключателя нужно снять его со стены и прозвонить, замыкаются ли контакты при замыкании выключателя, заодно проверить приходит ли на него напряжение.

Проверка выключателя света

Если напряжения на выключателе нет — проблема в распределительной коробке или в проводке между ней и выключателем. Если пропадает фаза при включении света — у вас короткое замыкание в патроне, светильнике, либо на линии от выключателя до светильника.

Не работает розетка

В розетках также может пропасть фаза. Это легко проверить, если снять нерабочую розетку и осмотреть качество соединений с проводами. Если соединения хорошие, то нужно знать, как запитаны розетки. Всего различают две схемы соединений:

Шлейф — это когда каждая следующая розетка подсоединяется к предыдущей параллельно, а звезда — когда от каждой розетки идет отдельная линия к электрощиту или распределительной коробке.

Схемы подключения розеток

Тогда в первом случае нужно проверить состояние клеммников и контактов в предыдущей по цепи рабочей розетке, а во втором случае — осмотреть распределительную коробку.

Протяжка клемм в розетке

В одной комнате

Если нет фазы в одной из комнат – обратите внимание на электрощит. Если каждая комната включается отдельным автоматом – возможно выбило автомат на эту комнату, либо же он вышел из строя. В первом случае – искать проблемы в проводке комнаты, а во втором – заменить автомат.

Аварийное состояние клемм автомата

Если все комнаты запитаны от одного автоматического выключателя, значит проблема в распределительной коробке, от которой запитана эта комната.

Читайте также:
Полированный бетон своими руками: технология, плюсы и минусы

Нет света в многоквартирном доме

Если вы обнаружили, что проблемы с подачей электричества не только у вас, но и у всех соседей по стояку — значит произошел, обрыв одной из трёх фаз либо во вводном электрощите дома, либо в каком-то из подъездных щитов. Такое происходит при отгорании нуля и перекосе фаз, когда из-за перенапряжений нагрузка и её токи неравномерно распределяются между потребителями. В результате контакты какого-то из соединений не выдерживают и отгорают.

Последствие отгорания нуля

В этом случае нельзя самому устранять неисправность, нужно обратиться в управляющую компанию или снабжающую организацию, чтобы они прислали дежурную бригаду электриков.

Реже бывают случаи, когда пропадает две фазы. В этом случае, как и в предыдущих нужно проверить состояние клемм автоматических выключателей на вашем квартирном щите и, если в нем все контакты и клеммы автоматов внешне исправны — вызвать бригаду электриков.

Самостоятельное устранение неисправностей в подъездных электрощитах опасно тем, что вы не можете в полной мере привести отключение всех линий и вывесить запрещающие плакаты.

В частном доме

Если вы обнаружили что пропало напряжение в сети, посмотрите на вводной автомат, если он выбит – включите его. Если после включения автомата напряжение не появилось – проблема во вводе в дом. Также возможна потеря контактов на автомате. А если при включении автомата его сразу же выбивает – однозначно есть короткое замыкание либо в проводке, либо в каком-то из подключенных приборов.

Последствия

Для электродвигателя режим работы на двух фазах из трёх является аварийным и крайне нежелательным. Также в трёхфазных сетях из-за пропадания одной из фаз нарушается равномерность нагрузки трансформаторов и сети в целом. Для трёхфазной электроплиты не столь опасен этот режим работы – у вас просто не будут работать некоторые конфорки. Всё это приводит и к повышенному току в нулевом проводе, его возможном отгорании и дальнейшем развитии аварийных ситуаций.

В заключение хотелось бы отметить, что решение проблемы с отсутствием напряжения в квартире или на конкретной линии в сущности заключается в проверке всех соединений и коммутационной аппаратуры этой линии. Её причины всего две – либо перекос фаз, либо отгорание проводника из-за плохого контакта или повышенной нагрузки. Настоятельно рекомендуем: при работах в электропроводке отключайте питание и по возможности работайте в поверенных диэлектрических перчатках. Не вмешивайтесь в подъездные щиты и электросети – лучше, чтобы это делали электрики из организации, на балансе которой лежит эта сеть.

Теперь вы знаете причины, по которым возникает ситуация, когда нет фазы на выключателе света, розетке или же на самой люстре. Надеемся, предоставленные нами советы помогли решить вашу проблему!

Две фазы в розетке. Причины. Что делать?

Здравствуйте, уважаемые читатели сайта sesaga.ru. Иногда в электрической проводке возникает интересная неисправность, которая приводит неопытного электрика или простого любителя в затруднительное положение. Такой неисправностью является возникновение второй фазы в розетке, которая там оказывается на месте нуля, что заставляет сильно призадуматься.

Измерение фазы индикаторной отверткой

На самом же деле на обоих гнездах розетки присутствует одна и та же фаза, так как в однофазной электрической сети переменное напряжение 220В формируется одним фазным и одним нулевым проводниками, и второй фазы там быть не может. Но именно понимание этого и вызывает некоторое недоумение, когда на месте штатного нуля обнаруживается фаза.

Если бы в розетке действительно оказалась вторая фаза, то напряжение между обеими фазами составило бы 380В и все включенные бытовые приборы пришлось бы нести в ремонтную мастерскую.

Немного теории.

Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу.

Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N).

Замкнутая электрическая цепь

При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены.

Разорван фазный провод в электрической цепи

При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва.

Читайте также:
Сколько стоит розетка? Правильно выбираем розетку и евророзетку.

Обрыв нулевого провода

Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя.

Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом.

Измерение напряжения между проводами

Совет. Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать мультиметр.

А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго:

1. Обрыв нуля во входном щитке дома или квартиры;
2. Обрыв нуля на входе или внутри распределительной коробки;
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.

1. Обрыв нуля во входном щитке дома или квартиры.

Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе.

Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара, которое постепенно переходит в обрыв.

Клеммные зажимы автоматического выключателя

При отсутствии нуля все электрические приборы в доме работать не будут. Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания бытовой техники или нить накала лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине.

Обрыв общего нуля в щитке дома

Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине.

2. Обрыв нуля на входе или внутри распределительной коробки.

При обрыве нулевой жилы перед распределительной коробкой или в самой коробке проблема с нулем и работой электрооборудования будет именно в том помещении дома или квартиры, в которое распределяет напряжение данная коробка. При этом в соседних помещениях все будет работать в штатном режиме.

Обрыв нуля в распределительной коробке

На рисунке выше видно, что перед левой распределительной коробкой произошел разрыв нулевой жилы провода, и фаза через нить накала лампы (нагрузку) попадает на розеточный ноль.

При поиске такой неисправности вскрывается проблемная коробка и находится скрутка общего нуля (она самая толстая в коробке). Жилы скрутки отрезаются, заново разделываются и опять скручиваются вместе.

Совет. Если провод медный, то скрутку желательно пропаять.

Когда ноль обрывается перед распределительной коробкой, как показано на верхнем рисунке, для поиска обрыва часто приходится вскрывать в стене штробу с этим проводом, чтобы найти место повреждения.

При поиске такой неисправности сначала в коробке находят скрутку с общим нулем и раскручивают на отдельные жилы. Затем каждая нулевая жила вызванивается до розеток и до потолка. Жила, которая не прозвонится, и будет являться входящим проводом в коробку.

Далее этот провод продергивается и вскрывается штукатурка в стене для поиска места повреждения провода. Однако такая неисправность относится к разряду трудновыполнимых, потому как ковырять стену мало кто берется – проще проложить новую трассу.

3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.

Может возникнуть ситуация, когда при сверлении отверстия, вкручивании самореза или забивании гвоздя в стену нарушается электрическая проводка. В довесок к этому, повреждение проводки сопровождается коротким замыканием, из-за которого провод повреждается полностью или частично. Лечится такая неисправность вскрытием места повреждения и восстановлением поврежденного участка провода.

Иногда при такой неисправности можно также наблюдать две фазы в розетке.
В момент замыкания происходит сварка фазной и нулевой жилы вместе, и поэтому фаза беспрепятственно попадает на нулевую жилу. Причем даже при выключенном из розеток электрооборудования и отключенных выключателей освещения фаза будет присутствовать на тех розетках и выключателях, на которые подается напряжение от этого провода.

Соединение фазы с нулем

Лечится неисправность восстановлением поврежденного участка проводки.

Читайте также:
Отзывы об электрических котлах для отопления частного дома

Если же остались вопросы, то в дополнение к статье посмотрите видеоролик, где также раскрыта тема обрыва нуля.

В этой статье мы рассмотрели только самые распространенные неисправности, возникающие в однофазной электрической сети при повреждении нулевой жилы провода. Теперь если у Вас в розетке появятся две фазы, Вы сможете легко определить и устранить подобную неисправность.
Удачи!

Не чувствую запахи: что делать?

Не чувствую запахи, что делать?

Обоняние дается нам с рождения – даже новорожденный ребенок узнает по запаху маму. С возрастом из-за уменьшения числа обонятельных волокон способность к восприятию запахов уменьшается. Однако и их количества вполне достаточно для распознавания всевозможных ароматов.

Но медицине известно немало случаев, когда пациенты жалуются на то, что полностью или частично пропал вкус и запах. Попробуем выяснить причины этого неприятного симптома.

Как мы ощущаем запах и вкус

Между этими двумя ощущениями существует тесная связь. Распознавание вкуса происходит с помощью вкусовых рецепторов языка. А нервы, находящиеся в носовой полости, реагируют на запахи. Оба ощущения передаются в мозг, который обрабатывает информацию и помогает нам правильно опознать и оценить ее.

Самые простые вкусы (кислый, сладкий, соленый) опознаются без участия обоняния. Но, чтобы отличить более сложные вкусовые ощущения, мозгу необходима информация и о запахе .

Причины расстройств обоняния

  1. Гипосмия – снижение способности к восприятию ароматов. Не чувствую запахи – с такой ситуацией сталкивались многие. Проблема это достаточно серьезная: при нарушении обоняния уменьшается возможность организма воспринимать сигналы об опасности, и создается угроза здоровью и даже жизни.
  2. Аносмия – полное отсутствие обоняния. В результате этого нарушения пища кажется безвкусной, теряется аппетит. Аносмия может привести к авитаминозу, истощению организма и депрессивным состояниям.

Также встречается гиперосмия – повышенная чувствительность к запахам и дизосмия – искажение обоняния, в результате чего ароматы воспринимаются неверно: безобидные запахи расцениваются как неприятные, и наоборот.

Существует множество причин, вызывающих гипосмию и аносмию. Патология может развиться, если наблюдаются:

  • ЛОР-заболевания (синуситы, полипы в носу)
  • аллергические реакции
  • стоматологические проблемы
  • авитаминоз
  • эпилепсия, ЧМТ
  • опухоли

Примерно в 25% случаев частичную или полную потерю обоняния вызывают инфекции верхних дыхательных путей и грипп.

Потеря обоняния при простуде

Если пропал вкус и запах при простуде, это свидетельствует о том, что рецепторы временно перестали реагировать на молекулы летучих веществ, попадающих с воздухом в полость носа.

Происходит это потому, что при простуде носовые пазухи начинают выделять большое количество слизи, необходимой для борьбы с более глубоким проникновением микроорганизмов. Гиперпродукция слизи снижает или полностью блокирует активность ресничек нейронов. Одновременно пропадает и вкус, так как нервные волокна обеих анализаторов тесно связаны.

У всех людей способность воспринимать запахи после насморка восстанавливается по-разному – у кого-то процесс восстановления занимает несколько дней, а кому-то требуется 2-3 недели. Все зависит от индивидуальных особенностей.

Самый безопасный способ для облегчения состояния в домашних условиях – очищение носа от накопившейся слизи с помощью промывания. Для этого используют солевой раствор, который готовят из расчета 1 чайн. ложка соли (лучше морской) на стакан теплой кипяченной воды. Полученным отфильтрованным раствором поочередно промывают обе ноздри спринцовкой.

Рекомендации о том, как вернуть быстрее обоняние при насморке, лучше всего получить у врача. Иногда для установления точной причины нарушений и назначения правильного лечения требуется дополнительная диагностика. А в условиях пандемии, возникшая потеря чувствительности может свидетельствовать о заражении Covid-19.

Почему при ковиде пропадает запах и вкус?

По словам отоларинголога Алексея Кошелева во время эпидемии на ухудшение обоняния стало жаловаться гораздо больше пациентов, чем раньше. При этом, у них не наблюдается признаков недомогания, нос дышит, но не чувствует запахов. С большой долей вероятности этот признак свидетельствует о заражении коронавирусом и может быть единственным симптомом болезни. Почему же при Covid-19 больной теряет способность различать запахи?

Главной причиной потери обоняния эксперты называют поражение вспомогательных клеток эпителия, окружающих нейроны. Они содержат АСЕ 2 – белок, который коронавирус использует для дальнейшего проникновения. Зараженные поддерживающие клетки отмирают, а без них нормальное функционирование обонятельных нервов становится невозможным. Помимо этого, возникает отек, который препятствует проникновению молекул запаха к рецепторам.

При обширном воспалении могут повреждаться не только вспомогательные клетки, но и нейроны. Большинство пациентов при ухудшении (потере) обоняния также жалуется и на потерю вкусовых ощущений.

Во время эксперимента на мышах польские ученые отметили, что у старых животных во вспомогательных клетках наблюдалось повышенное содержание АСЕ 2. Возможно, это объясняет, почему люди старшего возраста больше подвержены заражению.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: